Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [328419]
Effects of salinity, pH and growth phase on the protein productivity by Dunaliella salina
Sui, Y.; Vlaeminck, S.E. (2018). Effects of salinity, pH and growth phase on the protein productivity by Dunaliella salina. J. Chem. Technol. Biotechnol. 94(4): 1032-1040. https://dx.doi.org/10.1002/jctb.5850
In: Journal of chemical technology and biotechnology. Published for the Society of Chemical Industry by Blackwell Scientific Publications: Oxford Oxfordshire. ISSN 0268-2575; e-ISSN 1097-4660, more
Peer reviewed article  

Available in  Authors 

Authors  Top 

Abstract
    BACKGROUND

    Microalgae have long been adopted for use as human food, animal feed and high‐value products. For carotenogenesis, Dunaliella salina is one of the most studied microalgae, yet its protein synthesis has been limitedly reported. In this study, D. salina was cultivated at different NaCl and pH levels to optimize its protein productivity.

    RESULTS

    The biomass protein content followed an increase–decrease pattern throughout the growth phases, with a maximum in the exponential phase (60–80% over ash‐free dry weight). Adversely, the biomass pigment contents were at relatively stable levels (around 0.5% carotenoids, 1.3% chlorophyll a and 0.5% chlorophyll b over ash‐free dry weight). Among the tested conditions (1–3 mol L−1 salinity, pH 7.5–9.5), the highest protein productivity (43.5 mg L−1 day−1) was achieved at 2 mol L−1 salinity and pH 7.5 during the exponential phase, which surpassed others by 16–97%. Additionally, table salts were tested to be equivalent and cost‐efficient salt sources for the growth medium.

    CONCLUSION

    This study highlighted the suitability of D. salina as a protein source, providing guidelines for 70% cheaper medium formulation in the lab and for maximum protein productivity at larger scale.


All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors