Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [329462]
Coccolithophores: Functional biodiversity, enzymes and bioprospecting
Reid, E.L.; Worthy, C.A.; Probert, I.; Ali, S.T.; Love, J.; Napier, J.; Littlechild, J.A.; Somerfield, P.J.; Allen, M.J. (2011). Coccolithophores: Functional biodiversity, enzymes and bioprospecting. Mar. Drugs 9(4): 586-602. https://dx.doi.org/10.3390/md9040586
In: Marine Drugs. Molecular Diversity Preservation International (MDPI): Basel. ISSN 1660-3397; e-ISSN 1660-3397, more
Peer reviewed article  

Available in  Authors 

Author keywords
    functional biodiversity; bioprospecting; biocatalysis; coccolithophore

Authors  Top 
  • Reid, E.L.
  • Worthy, C.A.
  • Probert, I.
  • Ali, S.T.
  • Love, J.
  • Napier, J.
  • Littlechild, J.A., more
  • Somerfield, P.J., more
  • Allen, M.J.

Abstract
    Emiliania huxleyi is a single celled, marine phytoplankton with global distribution. As a key species for global biogeochemical cycling, a variety of strains have been amassed in various culture collections. Using a library consisting of 52 strains of E. huxleyi and an ‘in house‘ enzyme screening program, we have assessed the functional biodiversity within this species of fundamental importance to global biogeochemical cycling, whilst at the same time determining their potential for exploitation in biocatalytic applications. Here, we describe the screening of E. huxleyi strains, as well as a coccolithovirus infected strain, for commercially relevant biocatalytic enzymes such as acid/alkali phosphodiesterase, acid/alkali phosphomonoesterase, EC1.1.1-type dehydrogenase, EC1.3.1-type dehydrogenase and carboxylesterase.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors