Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [331033]
Putative degraders of low‐density polyethylene‐derived compounds are ubiquitous members of plastic‐associated bacterial communities in the marine environment
Pinto, M.; Polania Zenner, P.; Langer, T.M.; Harrison, J.; Simon, M.; Varela, M.M.; Herndl, G.J. (2020). Putative degraders of low‐density polyethylene‐derived compounds are ubiquitous members of plastic‐associated bacterial communities in the marine environment. Environ. Microbiol. 22(11): 4779-4793. https://doi.org/10.1111/1462-2920.15232
In: Environmental Microbiology. Blackwell Scientific Publishers: Oxford. ISSN 1462-2912; e-ISSN 1462-2920, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Pinto, M.
  • Polania Zenner, P.
  • Langer, T.M.
  • Harrison, J.
  • Simon, M.
  • Varela, M.M.
  • Herndl, G.J., more

Abstract

    It remains unknown whether and to what extent marine prokaryotic communities are capable of degrading plastic in the ocean. To address this knowledge gap, we combined enrichment experiments employing low‐density polyethylene (LDPE) as the sole carbon source with a comparison of bacterial communities on plastic debris in the Pacific, the North Atlantic and the northern Adriatic Sea. A total of 35 operational taxonomic units (OTUs) were enriched in the LDPE‐laboratory incubations after 1 year, of which 20 were present with relative abundances > 0.5% in at least one plastic sample collected from the environment. From these, OTUs classifiedas Cognatiyoonia, Psychrobacter, Roseovarius and Roseobacter were found in the communities of plastics collected atall oceanic sites. Additionally, OTUs classified as Roseobacter,Pseudophaeobacter, Phaeobacter, Marinovum and Cognatiyoonia, also enriched in the LDPE‐laboratory incubations, were enriched on LDPE communities compared to the ones associated to glass and polypropylene in in‐situ incubations in the northern Adriatic Sea after 1 month of incubation. Some of these enriched OTUs were also related to known alkane and hydrocarbon degraders. Collectively, these results demonstrate that there are prokaryotes capable of surviving with LDPE as the sole carbon source living on plastics in relatively high abundances in different water masses of the global ocean.


All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors