one publication added to basket [331061] | Submarine hydrothermal discharge and fluxes of dissolved Fe and Mn, and He isotopes at brothers volcano based on radium isotopes
Neuholz, R.; Kleint, C.; Schnetger, B.; Koschinsky, A.; Laan, P.; Middag, R.; Sander, S.G.; Thal, J.; Türke, A.; Walter, M.; Zitoun, R.; Brumsack, H.-J. (2020). Submarine hydrothermal discharge and fluxes of dissolved Fe and Mn, and He isotopes at brothers volcano based on radium isotopes. Minerals 10(11): 969. https://doi.org/10.3390/min10110969 In: Minerals. MDPI: Basel. e-ISSN 2075-163X, more | |
Author keywords | hydrothermal flux; radium isotopes; Kermadec island arc; helium; iron flux; manganese flux; 224Ra; 223Ra |
Authors | | Top | - Neuholz, R.
- Kleint, C.
- Schnetger, B.
- Koschinsky, A.
| - Laan, P., more
- Middag, R., more
- Sander, S.G.
- Thal, J.
| - Türke, A.
- Walter, M.
- Zitoun, R., more
- Brumsack, H.-J.
|
Abstract | Hydrothermal venting is an important transfer process of energy and elements between the Earth’s solid material and the oceans. Compared to mid-ocean-ridge hydrothermal vent fields, those at intra-oceanic island arcs are typically in shallower water depth and have a more variable geochemical fluid composition. Biologically essential trace elements (such as Fe and Mn) are generally elevated in fluids of both deep and shallow hydrothermal vent fields, while vents at shallower water depth influence the photic zone more directly and thus are potentially more relevant for marine primary productivity. However, fluid flux estimations of island arc hydrothermal systems into the surrounding water column are scarce. This study (I) presents a method based on short-lived radium isotopes to estimate submarine hydrothermal discharge (SHD), (II) applies this method at Brothers volcano in the southern Kermadec arc, located northeast of New Zealand, and (III) gives dissolved Fe, Mn and He isotope flux estimates for the Earth´s longest intra-oceanic island arc, the Kermadec arc. The comparison between measured inert He isotope concentrations in the plume with calculated concentrations based on Ra isotopes matched reasonably well, which supports the use of a Ra-based discharge model. Overall, this study represents a novel approach to assess fluid and thus trace element fluxes from one hydrothermal vent field, which can be applied in future studies on various hydrothermal systems to improve geochemical models of element cycling in the ocean. |
|