Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [331241]
The bacterial sulfur cycle in expanding dysoxic and euxinic marine waters
van Vliet, D.M.; von Meijenfeldt, F.A.B.; Dutilh, B.E.; Villanueva, L.; Sinninghe Damsté, J.S; Stams, A.J.M.; Sánchez-Andrea, I. (2021). The bacterial sulfur cycle in expanding dysoxic and euxinic marine waters. Environ. Microbiol. 23(6): 2834-2857. https://doi.org/10.1111/1462-2920.15265
In: Environmental Microbiology. Blackwell Scientific Publishers: Oxford. ISSN 1462-2912; e-ISSN 1462-2920, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • van Vliet, D.M.
  • von Meijenfeldt, F.A.B.
  • Dutilh, B.E.
  • Villanueva, L., more
  • Sinninghe Damsté, J.S, more
  • Stams, A.J.M.
  • Sánchez-Andrea, I.

Abstract
    Dysoxic marine waters (DMW, < 1 μM oxygen) are currently expanding in volume in the oceans, which has biogeochemical, ecological and societal consequences on a global scale. In these environments, distinct bacteria drive an active sulfur cycle, which has only recently been recognized for open‐ocean DMW. This review summarizes the current knowledge on these sulfur‐cycling bacteria. Critical bottlenecks and questions for future research are specifically addressed. Sulfate‐reducing bacteria (SRB) are core members of DMW. However, their roles are not entirely clear, and they remain largely uncultured. We found support for their remarkable diversity and taxonomic novelty by mining metagenome‐assembled genomes from the Black Sea as model ecosystem. We highlight recent insights into the metabolism of key sulfur‐oxidizing SUP05 and Sulfurimonas bacteria, and discuss the probable involvement of uncultivated SAR324 and BS‐GSO2 bacteria in sulfur oxidation. Uncultivated Marinimicrobia bacteria with a presumed organoheterotrophic metabolism are abundant in DMW. Like SRB, they may use specific molybdoenzymes to conserve energy from the oxidation,reduction or disproportionation of sulfur cycle intermediates such as S 0 and thiosulfate, produced from the oxidation of sulfide. We expect that tailored sampling methods and a renewed focus on cultivation will yield deeper insight into sulfur‐cycling bacteria in DMW.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors