Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [336527]
Half of global methane emissions come from highly variable aquatic ecosystem sources
Rosentreter, J.A.; Borges, A.V.; Deemer, B.R.; Holgerson, M.A.; Liu, S.; Song, C.; Melack, J.; Raymond, P.A.; Duarte, C.M.; Allen, G.H.; Olefeldt, D.; Poulter, B.; Battin, T.I.; Eyre, B.D. (2021). Half of global methane emissions come from highly variable aquatic ecosystem sources. Nature Geoscience 14(4): 225-230. https://dx.doi.org/10.1038/s41561-021-00715-2
In: Nature Geoscience. Nature Publishing Group: London. ISSN 1752-0894; e-ISSN 1752-0908, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Rosentreter, J.A.
  • Borges, A.V., more
  • Deemer, B.R.
  • Holgerson, M.A.
  • Liu, S.
  • Song, C.
  • Melack, J.
  • Raymond, P.A.
  • Duarte, C.M., more
  • Allen, G.H.
  • Olefeldt, D.
  • Poulter, B.
  • Battin, T.I.
  • Eyre, B.D.

Abstract
    Atmospheric methane is a potent greenhouse gas that plays a major role in controlling the Earth’s climate. The causes of the renewed increase of methane concentration since 2007 are uncertain given the multiple sources and complex biogeochemistry. Here, we present a metadata analysis of methane fluxes from all major natural, impacted and human-made aquatic ecosystems. Our revised bottom-up global aquatic methane emissions combine diffusive, ebullitive and/or plant-mediated fluxes from 15 aquatic ecosystems. We emphasize the high variability of methane fluxes within and between aquatic ecosystems and a positively skewed distribution of empirical data, making global estimates sensitive to statistical assumptions and sampling design. We find aquatic ecosystems contribute (median) 41% or (mean) 53% of total global methane emissions from anthropogenic and natural sources. We show that methane emissions increase from natural to impacted aquatic ecosystems and from coastal to freshwater ecosystems. We argue that aquatic emissions will probably increase due to urbanization, eutrophication and positive climate feedbacks and suggest changes in land-use management as potential mitigation strategies to reduce aquatic methane emissions.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors