Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [352123]
Internal wave breaking near the foot of a steep East-Pacific continental slope
van Haren, H.; Voet, G.; Alford, M.H.; Torres, D.J. (2022). Internal wave breaking near the foot of a steep East-Pacific continental slope. Prog. Oceanogr. 205: 102817. https://dx.doi.org/10.1016/j.pocean.2022.102817
In: Progress in Oceanography. Pergamon: Oxford,New York,. ISSN 0079-6611; e-ISSN 1873-4472, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Pacific Ocean; Sloping topography; High-resolution instrumentation; Internal wave breaking; High turbulence intensity near seafloor

Authors  Top 
  • van Haren, H., more
  • Voet, G.
  • Alford, M.H.
  • Torres, D.J.

Abstract

    The sloping sides of ocean basins are of particular interest for their potential importance for considerable turbulence generation via internal wave breaking and associated water circulation. The difference with the ocean interior may be manifest in a 10–100 m relatively thin layer above the seafloor. We set up an observational study with high-resolution stand-alone instrumentation attached to a custom-made release-anchor frame sampling to within 0.5 m from the seafloor up to 150 m above it. For two months, the taut wire moored instrumentation was tested in 1100 m water depth of the East-Pacific, off the coast of San Diego (CA, USA). The mooring was oceanward of an underwater bank and near the foot of its steep but gentle two-dimensional slope. Temperature sensor data demonstrate that internal waves peak at semidiurnal frequencies. While short (<1 h) periods show complicated structure, tidally averaged turbulence dissipation rate monotonically increases towards the seafloor over two orders of magnitude. The largest turbulence dissipation rates are observed during the relatively warm phase of an internal wave. Although the local topographic slope is supercritical for semidiurnal internal waves, turbulent bores propagating up the slope and hydraulic jumps are not observed. Most of the turbulence appears to be dominated by shear production, but not related to steady frictional flow near the seafloor.


All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors