Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [354018]
Influence of ocean tides and ice shelves on ocean-ice interactions and dense shelf water formation in the D'Urville Sea, Antarctica
Huot, P.-V.; Fichefet, T.; Jourdain, N.C.; Mathiot, P.; Rousset, C.; Kittel, C.; Fettweis, X. (2021). Influence of ocean tides and ice shelves on ocean-ice interactions and dense shelf water formation in the D'Urville Sea, Antarctica. Ocean Modelling 162: 101794. https://dx.doi.org/10.1016/j.ocemod.2021.101794
In: Ocean Modelling. Elsevier: Oxford. ISSN 1463-5003; e-ISSN 1463-5011, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    East Antarctica; Sea ice; Ocean; Ice shelves; Tides; Dense Shelf Water

Authors  Top 
  • Huot, P.-V., more
  • Fichefet, T., more
  • Jourdain, N.C.
  • Mathiot, P., more
  • Rousset, C.
  • Kittel, C., more
  • Fettweis, X., more

Abstract
    The D’Urville Sea, East Antarctica, is a major source of Dense Shelf Water (DSW), a precursor of Antarctic Bottom Water (AABW). AABW is a key water mass involved in the worldwide ocean circulation and long-term climate variability. The properties of AABW in global climate models suffer from several biases, making climate projections uncertain. These models are potentially omitting or misrepresenting important mechanisms involved in the formation of DSW, such as tides and ocean–ice shelf interactions. Recent studies pointed out that tides and ice shelves significantly influence the coastal seas of Antarctica, where AABW originates from. Yet, the implications of these two processes in the formation and evolution of DSW are poorly understood, in particular in the D’Urville Sea. Using a series of NEMO-LIM numerical simulations, we assess the sensitivity of dense water formation in the D’Urville Sea to the representation of tides and ocean–ice shelf interactions during the years 2010–2015. We show that the ice shelves off Adélie Land are highly sensitive to tidal forcing, with a significant basal melt increase in the presence of tides. Ice shelf basal melt freshens and cools the ocean over significant portions of the coastal seas at the depth of the ice shelf draft. An opposite warming and increase in salinity are found in the upper layers. The influence of ice shelf basal melt on the ocean is largely increased in the presence of tides. However, the production of sea ice is found to be mostly unaffected by these two processes. Water mass transport out of polynyas and ice shelf cavities are then investigated, together with their sensitivity to tides and ocean–ice shelf interactions. Ice shelf basal melt impacts the volume of dense waters in two ways: (1) Dense Shelf Water and Modified Shelf Water are consumed to form water masses of intermediate density inside the ice shelf cavities, and (2) the freshening of the ocean subsurface makes its transformation into dense water by sea ice formation more difficult. These results suggest that ice shelf basal melt variability can explain part of the observed changes of dense water properties, and may also affect the production of dense water in a future climate.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors