one publication added to basket [354060] | Comparative study of different algae pyrolysis using photoionization mass spectrometry and gas chromatography/mass spectrometry
Niu, Q.; Wang, J.; Cao, C.; Cheng, Z.; Zhu, Y.; Wen, W.; Wang, J.; Pan, Y.; Yan, B.; Chen, G.; Ronsse, F. (2021). Comparative study of different algae pyrolysis using photoionization mass spectrometry and gas chromatography/mass spectrometry. Journal of Analytical and Applied Pyrolysis 155: 105068. https://dx.doi.org/10.1016/j.jaap.2021.105068 In: Journal of Analytical and Applied Pyrolysis. ELSEVIER SCIENCE BV: Amsterdam. ISSN 0165-2370; e-ISSN 1873-250X, more | |
Keywords | Algae Nannochloropsis D.J.Hibberd, 1981 [WoRMS]; Sargassum C.Agardh, 1820 [WoRMS]; Spirulina Turpin ex Gomont, 1892 [WoRMS]
| Author keywords | Algae; Pyrolysis; Reaction pathway; Photoionization mass spectrometry |
Authors | | Top | - Niu, Q., more
- Wang, J.
- Cao, C.
- Cheng, Z.
| - Zhu, Y.
- Wen, W.
- Wang, J.
- Pan, Y.
| - Yan, B.
- Chen, G.
- Ronsse, F., more
|
Abstract | Pyrolysis of three algae, i.e. Nannochloropsis, Spirulina, and Sargassum was investigated by the combination of fixed bed pyrolysis with gas chromatography/mass spectrometry and pyrolysis photoionization mass spectrometry (py-PIMS) methods. Lipid, protein, and carbohydrate are the dominant components of the three algae, respectively. Mass spectrum profiles at different temperatures (400 °C, 500 °C, 600 °C, and 700 °C), temperature-programmed and time-evolved profiles of major products were measured. The decomposition reaction of fatty acids led to the formation of alkanes and alkenes. Aromatic compounds came from the nitrogen-containing compounds derived from protein and dehydrogenation of cyclic alkanes and alkenes through the Diels–Alder reaction from unsaturated fatty acids. Polycyclic nitrogenous compounds can be generated by the ring condensation reactions of monocyclic N-heterocyclic compounds. Lipids may interfere with the decomposition of protein. The presence of carbohydrates facilitates the formation of N-heterocyclic compounds. Two formation pathways of 1,4:3,6-dianhydro-α-d-glucopyranose and 2,4-dimethylfuran from hemicellulose and cellulose at different temperatures were observed. |
|