Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [355074]
A mechanism for temporary bioadhesion
Wunderer, J.; Lengerer, B.; Pjeta, R.; Bertemes, P.; Kremser, L.; Lindner, H.; Ederth, T.; Hess, M.W.; Stock, D.; Salvenmoser, W.; Ladurner, P. (2019). A mechanism for temporary bioadhesion. Proc. Natl. Acad. Sci. U.S.A. 116(10): 4297-4306. https://dx.doi.org/10.1073/pnas.1814230116
In: Proceedings of the National Academy of Sciences of the United States of America. The Academy: Washington, D.C.. ISSN 0027-8424; e-ISSN 1091-6490, more
Peer reviewed article  

Available in  Authors 

Keywords
    Macrostomum lignano Ladurner, Schärer, Salvenmoser & Rieger, 2005 [WoRMS]
    Marine/Coastal

Authors  Top 
  • Wunderer, J.
  • Lengerer, B., more
  • Pjeta, R.
  • Bertemes, P.
  • Kremser, L.
  • Lindner, H.
  • Ederth, T.
  • Hess, M.W.
  • Stock, D.
  • Salvenmoser, W.
  • Ladurner, P.

Abstract
    Synthetic adhesives are widely used in our daily lives, in medicine and industry. These man-made glues contain toxic or carcinogenic components. In contrast, biological adhesives produced by animals and plants are nontoxic and tissue-compatible, and are able to function under wet conditions. However, little is known about the mechanisms underlying biological adhesives. We characterized adhesion and release in our model system Macrostomum lignano. We used a state-of-the-art toolbox to identify the involved adhesive and release molecules. We aim for understanding the fundamental mechanisms that mediate adhesion and release in flatworms, with the future goal of generating a flatworm-derived biomimetic glue that can be applied in biomedicine and industry.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors