one publication added to basket [359584] | Typical and anomalous pathways of surface-floating material in the northern North Atlantic and Arctic Ocean
Herman, A.; Weslawski, J.M. (2022). Typical and anomalous pathways of surface-floating material in the northern North Atlantic and Arctic Ocean. NPG Scientific Reports 12(1): 20521. https://dx.doi.org/10.1038/s41598-022-25008-5 In: Scientific Reports (Nature Publishing Group). Nature Publishing Group: London. ISSN 2045-2322; e-ISSN 2045-2322, more | |
Authors | | Top | - Herman, A.
- Weslawski, J.M., more
| | |
Abstract | Surface waters of the oceans carry large amounts of material, including sediment grains, plankton organisms, and ice crystals, as well as pollutants, e.g., oil and plastic. Transport and spatio-temporal distribution of this material depend on its properties and on the dynamical processes in the ocean mixed layer—currents, waves, turbulence, and convective mixing—acting at a wide range of scales. Due to its importance for marine physics, biogeochemistry and ecology, substantial research efforts have been invested in recent years in observations and modelling of ocean material transport, especially in the context of marine plastic pollution. Nevertheless, many important questions remain unanswered. In this work, numerically simulated trajectories of surface-floating particles in the period 1993–2020 are used to analyse typical and anomalous transport pathways in the northern North Atlantic and the Arctic Ocean. Model validation is performed based on additional simulations of 387 buoy tracks from the International Arctic Buoy Programme in the years 2014–2020. The trajectories are computed based on surface currents from a hydrodynamic model and Stokes drift from a spectral wave model. It is shown that due to high amplitudes of Stokes drift (comparable with wind-induced currents in ice-free parts of the domain of study), combined with high directional variability, the drifting paths are substantially modified in ice-free regions, underlying the important role of wave-induced currents in surface material transport. A statistical analysis of ∼1.6108" role="presentation">∼1.6108 |
|