Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [359787]
Water motion and pH jointly impact the availability of dissolved inorganic carbon to macroalgae
James, R.K.; Hepburn, C.D.; Pritchard, D.; Richards, D.K.; Hurd, C.L. (2022). Water motion and pH jointly impact the availability of dissolved inorganic carbon to macroalgae. NPG Scientific Reports 12(1): 21947. https://dx.doi.org/10.1038/s41598-022-26517-z
In: Scientific Reports (Nature Publishing Group). Nature Publishing Group: London. ISSN 2045-2322; e-ISSN 2045-2322, more
Peer reviewed article  

Available in  Authors 

Keywords
    Hymenena palmata (Harvey) Kylin, 1924 [WoRMS]; Xiphophora gladiata (Labillardière) Montagne ex Kjellman, 1893 [WoRMS]
    Marine/Coastal

Authors  Top 
  • James, R.K.
  • Hepburn, C.D.
  • Pritchard, D.
  • Richards, D.K.
  • Hurd, C.L.

Abstract
    The supply of dissolved inorganic carbon to seaweeds is a key factor regulating photosynthesis. Thinner diffusive boundary layers at the seaweed surface or greater seawater carbon dioxide (CO2) concentrations increase CO2 supply to the seaweed surface. This may benefit seaweeds by alleviating carbon limitation either via an increased supply of CO2 that is taken up by passive diffusion, or via the down-regulation of active carbon concentrating mechanisms (CCMs) that enable the utilization of the abundant ion bicarbonate (HCO3). Laboratory experiments showed that a 5 times increase in water motion increases DIC uptake efficiency in both a non-CCM (Hymenena palmata, Rhodophyta) and CCM (Xiphophora gladiata, Phaeophyceae) seaweed. In a field survey, brown and green seaweeds with active-CCMs maintained their CCM activity under diverse conditions of water motion. Whereas red seaweeds exhibited flexible photosynthetic rates depending on CO2 availability, and species switched from a non-CCM strategy in wave-exposed sites to an active-CCM strategy in sheltered sites where mass transfer of CO2 would be reduced. 97–99% of the seaweed assemblages at both wave-sheltered and exposed sites consisted of active-CCM species. Variable sensitivities to external CO2 would drive different responses to increasing CO2 availability, although dominance of the CCM-strategy suggests this will have minimal impact within shallow seaweed assemblages.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors