Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [359971]
Glacial meltwater determines the balance between autotrophic and heterotrophic processes in a Greenland fjord
Sejr, M.K.; Bruhn, A.; Dalsgaard, T.; Juul-Pedersen, T.; Stedmon, C.A.; Blicher, M.; Meire, L.; Mankoff, K.D.; Thyrring, J. (2022). Glacial meltwater determines the balance between autotrophic and heterotrophic processes in a Greenland fjord. Proc. Natl. Acad. Sci. U.S.A. 119(52). https://dx.doi.org/10.1073/pnas.2207024119

Additional data:
In: Proceedings of the National Academy of Sciences of the United States of America. The Academy: Washington, D.C.. ISSN 0027-8424; e-ISSN 1091-6490, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Coastal ecology; Greenland; primary production; respiration; CO2

Authors  Top 
  • Sejr, M.K.
  • Bruhn, A.
  • Dalsgaard, T.
  • Juul-Pedersen, T.
  • Stedmon, C.A.
  • Blicher, M.
  • Meire, L., more
  • Mankoff, K.D.
  • Thyrring, J.

Abstract

    Global warming accelerates melting of glaciers and increases the supply of meltwater and associated inorganic particles, nutrients, and organic matter to adjacent coastal seas, but the ecosystem impact is poorly resolved and quantified. When meltwater is delivered by glacial rivers, the potential impact could be a reduction in light and nutrient availability for primary producers while supplying allochthonous carbon for heterotrophic processes, thereby tipping the net community metabolism toward heterotrophy. To test this hypothesis, we determined physical and biogeochemical parameters along a 110-km fjord transect in NE Greenland fjord, impacted by glacial meltwater from the Greenland Ice Sheet. The meltwater is delivered from glacier-fed river outlets in the inner parts of the fjord, creating a gradient in salinity and turbidity. The planktonic primary production was low, 20–45 mg C m−2 d−1, in the more turbid innerhalf of the fjord, increasing 10-fold to around 350 mg C m−2 d −1 in the shelf waters outside the fjord. Plankton community metabolism was measured at three stations, which displayed a transition from net heterotrophy in the inner fjord to net autotrophy in the coastal shelf waters. Respiration was significantly correlated to turbidity, with a 10-fold increase in the inner turbid part of the fjord. We estimated the changes in meltwater input and sea ice coverage in the area for the last 60 y. The long-term trend and the observed effects demonstrated the importance of freshwater runoff as a key driver of coastal ecosystem change in the Arctic with potential negative consequences for coastal productivity.


All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors