Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [362903]
Parallel artificial and biological electric circuits power petroleum decontamination: the case of snorkel and cable bacteria
Marzocchi, U.; Palma, E.; Rossetti, S.; Aulenta, F.; Scoma, A. (2020). Parallel artificial and biological electric circuits power petroleum decontamination: the case of snorkel and cable bacteria. Wat. Res. 173: 115520. https://dx.doi.org/10.1016/j.watres.2020.115520
In: Water Research. Elsevier: Oxford; New York. ISSN 0043-1354; e-ISSN 1879-2448, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    Cable bacteria; Snorkel; Sediment; Hydrocarbon; Long-distance electron transport; Remediation

Authors  Top 
  • Marzocchi, U., more
  • Palma, E.
  • Rossetti, S.
  • Aulenta, F.
  • Scoma, A., more

Abstract
    Degradation of petroleum hydrocarbons (HC) in sediments is often limited by the availability of electron acceptors. By allowing long-distance electron transport (LDET) between anoxic sediments and oxic overlying water, bioelectrochemical snorkels may stimulate the regeneration of sulphate in the anoxic sediment thereby accelerating petroleum HC degradation. Cable bacteria can also mediate LDET between anoxic and oxic sediment layers and thus theoretically stimulate petroleum HC degradation. Here, we quantitatively assessed the impact of cable bacteria and snorkels on the degradation of alkanes in marine sediment from Aarhus Bay (Denmark). After seven weeks, cable bacteria and snorkels accelerated alkanes degradation by +24 and +25%, respectively, compared to control sediment with no cable bacteria nor snorkel. The combination of snorkels and cable bacteria further enhanced alkanes degradation (+46%). Higher degradation rates were sustained by LDET-induced sulphide removal rather than, as initially hypothesized, sulphate regeneration. Cable bacteria are thus overlooked players in the self-healing capacity of crude-oil contaminated sediments, and may inspire novel remediation treatments upon hydrocarbon spillage.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors