Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [365619]
Unusual mooring oscillations: apparent Foucault–Wheatstone device in the deep ocean?
van Haren, H. (2023). Unusual mooring oscillations: apparent Foucault–Wheatstone device in the deep ocean? J. Mar. Sci. Eng. 11(5): 1087. https://dx.doi.org/10.3390/jmse11051087
In: Journal of Marine Science and Engineering. MDPI: Basel. ISSN 2077-1312; e-ISSN 2077-1312, more
Peer reviewed article  

Available in  Author 

Author keywords
    1 km-long taut-wire deep-ocean mooring; non-swiveled mid-cable pressure sensor; deterministic signals at near-inertial sub-harmonics; sharp spectral peaks; mooring vibrations due to deep-ocean currents; seamount-related relative vorticity

Author  Top 

Abstract
    A pressure sensor, located for four months in the middle of a 1275 m-long taut deep-ocean mooring in 2380 m water depth above a seamount with sub-surface top-buoys and seafloor anchor-weight, demonstrates narrow-band spectral peaks of deterministic well-predictable signals with equivalent 0.5 m amplitudes at uncommon sub-harmonic frequencies f*/4, f*/2, 3f*/4 of the local near-inertial frequency f* = 1.085f, where f denotes the Coriolis parameter. None of these sub-harmonics can be associated with oceanographic motions, which are dominated by super-inertial internal waves that are more broadband and less predictable. No corresponding peaks are found in spectra of other observables like current velocity (differences), temperature, and pressure in the top buoy of the mooring. The mid-cable pressure sensor was mounted on a nearly 1 kN weighing non-swiveled frame. Its data are hypothesized to reflect a resonant mechanical oscillation of the high-tensioned elastic steel mooring cable under repeated short-scale Strouhal cable vibrations induced by vortex-shedding due to water-flow drag and/or possibly by tidal baroclinic motions that are about 50% larger near the sloping seafloor of the seamount than mid-depth thereby modifying the mooring-cable in a helical shape. Cable dynamics and mooring-motion considerations yield inconclusive results to explain the observations. Hypothesizing, the observations suggest, cable dynamically, sub-harmonic drainage of helix-shape source at non-tidal semidiurnal center-frequency (M 2 + S2)/2 = 3f*/2, physically, the measurement of Earth rotation thereby mimicking a Foucault–Wheatstone device, and, oceanographically, the relative vortex-rotation ζ/2 = 0.085 f being possibly induced by water-flow interacting quasi-permanently with the nearby seamount by a topographic obstruction, so that total local near-inertial frequency f* = f + ζ/2.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Author