Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [368618]
Unsteady ship-bank interaction: a comparison between experimental and computational predictions
Delefortrie, G.; Verwilligen, J.; Pinkster, J.A.; Yuan, Z.M.; Liu, Y.H.; Kastens, M.; Van Hoydonck, W.; Pinkster, H.J.M.; Lataire, E. (2024). Unsteady ship-bank interaction: a comparison between experimental and computational predictions. Ship Technology Research 71(1): 33-57. https://dx.doi.org/10.1080/09377255.2023.2275372
In: Ship Technology Research: Journal for Research in Shipbuilding and Related Subjects. Schiffahrtsverlag Hansa: Hamburg. ISSN 0937-7255, more
Peer reviewed article  

Available in  Authors 

Keywords
    Harbours and waterways > Manoeuvring behaviour > Bank effects
    Numerical calculations
    Physical modelling
Author keywords
    Unsteady; harbour; benchmark; hydrodynamics; potential flow; RANS; EFD; ship-bank

Authors  Top 
  • Delefortrie, G., more
  • Verwilligen, J., more
  • Pinkster, J.A.
  • Yuan, Z.M.
  • Liu, Y.H.
  • Kastens, M.
  • Van Hoydonck, W., more
  • Pinkster, H.J.M.
  • Lataire, E., more

Abstract
    A collaborative exercise is presented where different numerical methods were used to recreate the forces acting on a ship model while executing captive model tests along a channel which has an unsteady cross section (dock opening). Such a layout is typical for a harbour environment. The unsteady nature of the cross section leads to peak values in forces, sinkage and free surface deformations. Experimental tests were conducted by Flanders Hydraulics (with the co-operation of Ghent University). Numerical contributions involve three potential flow methods (Strathclyde University and Pinkster Marine Hydrodynamics) and one RANS method (Federal Waterways Engineering and Research Institute of Germany). All methods are capable of qualitatively predicting the water level variations and sinkage and trim of the vessel. RANS has a better capability of predicting the unsteady sway force and yaw moment acting on the ship including sinkage and trim, but it comes at a much higher computational cost.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors