one publication added to basket [37131] | What is the smallest distance of genetic structuring in the brooding ophiuroid Amphipholis squamata from the Western Mediterranean?
Féral, J.P.; Barré, N.; Villard, A.-M.; Chenuil, A. (2003). What is the smallest distance of genetic structuring in the brooding ophiuroid Amphipholis squamata from the Western Mediterranean?, in: Féral, J.-P. et al. Echinoderm Research 2001: proceedings of the 6th European Conference on Echinoderm Research, Banyuls-sur-mer, 3-7 September 2001. pp. 23-27 In: Féral, J.-P.; David, B. (2003). Echinoderm Research 2001: Proceedings of the 6th European Conference on Echinoderm Research, Banyuls-sur-mer, 3-7 September 2001. Swets and Zeitlinger: Lisse. ISBN 90-5809-528-2. XVI, 337 pp., more |
Available in | Authors | | Document type: Conference paper
|
Keywords | Brood care Genomes Reproduction > Sexual reproduction > Biological fertilization Amphipholis squamata (Delle Chiaje, 1828) [WoRMS] MED, Western Mediterranean [Marine Regions] Marine/Coastal |
Authors | | Top | - Féral, J.P., more
- Barré, N.
- Villard, A.-M.
- Chenuil, A.
| | |
Abstract | Our goal was to assess the smallest scale of genetic differentiation in a minute ophiuroid considered as a cosmopolitan species, which was already shown to be differentiated at a relatively small scale (about 1 km) in the Mediterranean Sea-Medes Islands. Amphipholis squamata is hermaphroditic and broods its young. Both auto- and allo-fertilization occur. Morphs of several colors exist, and the species is bioluminescent. RAPD markers were used to assess the genetic structuring at a very small scale (a 90 X 90 cm square consisting of 3 X 3 adjacent quadrates of 30 cm side length each). Very strong genetic differentiation was found between quadrates, it was not correlated to the distance between quadrates. An equally strong differentiation was observed between color morphs (pooling individuals of the 9 quadrates). To check if the observed differentiation between quadrates was due to genetic differentiation between color morphs, associated with heterogeneous distribution of "colors" among quadrates, we tested for differentiation between quadrates, using individuals of two morphs taken one by one, namely the "green" morph, and the "gray" morph. There was still a strong differentiation between quadrates. No relationships can be deduced between genetic entities and color morphs. |
|