Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [59234]
Sulphide detoxification in Hediste diversicolor and Marenzelleria viridis, two dominant polychaete worms within the shallow coastal waters of the southern Baltic Sea
Hahlbeck, E.; Arndt, C.; Schiedek, D. (2000). Sulphide detoxification in Hediste diversicolor and Marenzelleria viridis, two dominant polychaete worms within the shallow coastal waters of the southern Baltic Sea. Comp. Biochem. Physiol. (B Biochem. Mol. Biol.) 125(4): 457-471. https://dx.doi.org/10.1016/S0305-0491(00)00158-9
In: Comparative Biochemistry and Physiology. Part B. Biochemistry and Molecular Biology. Pergamon: Oxford. ISSN 1096-4959; e-ISSN 1879-1107, more
Peer reviewed article  

Keywords
    Agents > Inhibitors > Enzyme inhibitors
    Aquatic organisms > Marine organisms > Aquatic animals > Marine invertebrates
    Biology > Physiology > Animal physiology
    Biology > Physiology > Ecophysiology
    Chemical compounds > Sulphur compounds > Sulphides
    Chemical reactions > Degradation > Biodegradation > Anaerobic digestion
    Detoxification
    Eutrophication
    Oxygen consumption
    Properties > Biological properties > Tolerance > Exposure tolerance
    Properties > Biological properties > Tolerance > Pollution tolerance
    Hediste diversicolor (O.F. Müller, 1776) [WoRMS]; Marenzelleria viridis (Verrill, 1873) [WoRMS]
    ANE, Baltic [Marine Regions]
    Marine/Coastal

Authors  Top 
  • Hahlbeck, E.
  • Arndt, C.
  • Schiedek, D., more

Abstract
    The polychaete worms Marenzelleria viridis (Verrill 1873) and Hediste diversicolor (O.F. Mueller) form the main part of the macro-zoobenthos in soft-bottomed shallow inlets of the Baltic Sea. Due to high eutrophication within these waters the animals are exposed to low oxygen and high sulphide concentrations. Specimens of both species from a low salinity location (S 8 ppt) were compared concerning their physiological abilities in coping with this hostile environment. Sulphide detoxification occurred in both polychaetes even during severe hypoxia with the main end-product being thiosulphate. In absence of sulphide nearly no end-products of anaerobic metabolism were found in the worms during moderate hypoxia (pO sub(2) = 7 kPa). In presence of hydrogen sulphide, succinate, a sensitive indicator of anaerobic metabolism, was accumulated in higher amounts at low sulphide concentrations (0.3 mM) already. Oxygen consumption and ATP production was determined in isolated mitochondria of both species. Both polychaetes were able to perform enzymatic sulphide oxidation in the mitochondria at concentrations up to 50 mu M. This process was coupled with oxidative phosphorylation. At least in M. viridis sulphide respiration was not completely inhibited by cyanide, suggesting an alternative oxidation pathway, which by-passes the cytochrome-c-oxidase. The two species did not differ in the rate of sulphide detoxification, but H. diversicolor produced about as twice as much ATP from mitochondrial sulphide oxidation. Differences in mitochondrial sulphide oxidation are probably related to the different life strategies of the worms.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors