one publication added to basket [76226] | Estimates of Southern Ocean primary production - constraints from predator carbon demand and nutrient drawdown
Priddle, J.; Boyd, I.L.; Whitehouse, M.J.; Murphy, E.J.; Croxall, J.P. (1998). Estimates of Southern Ocean primary production - constraints from predator carbon demand and nutrient drawdown. J. Mar. Syst. 17(1-4): 275-288. https://dx.doi.org/10.1016/S0924-7963(98)00043-8 In: Journal of Marine Systems. Elsevier: Tokyo; Oxford; New York; Amsterdam. ISSN 0924-7963; e-ISSN 1879-1573, more Also appears in:Le Fèvre, J.; Tréguer, P. (Ed.) (1998). Carbon Fluxes and Dynamic Processes in the Southern Ocean: Present and Past. Selected papers from the International JGOFS Symposium, Brest, France, 28-31 August 1995. Journal of Marine Systems, 17(1-4). Elsevier: Amsterdam. 1-619 pp., more | |
Keywords | Aquatic communities > Plankton > Zooplankton Aquatic organisms > Food organisms Aquatic organisms > Heterotrophic organisms > Predators Aquatic organisms > Marine organisms > Aquatic mammals > Marine mammals Biological production > Primary production Fauna > Aquatic organisms > Aquatic animals > Shellfish > Marine organisms > Marine crustaceans Food webs > Food chains Inorganic matter Measurement Nutritional requirements Organic matter Organic matter > Carbon > Organic carbon Trophic relationships Pinnipedia [WoRMS] PS, Antarctic Ocean [Marine Regions]; PS, Southern Ocean [Marine Regions] Marine/Coastal |
Authors | | Top | - Priddle, J.
- Boyd, I.L., more
- Whitehouse, M.J.
| - Murphy, E.J.
- Croxall, J.P.
| |
Abstract | In view of the wide range of estimates for the total primary production for the Southern Ocean south of the Subantarctic Front—current estimates range from 1.2 to 3.5 Gtonne C year−1—we have examined two indirect methods for assessing primary production. First, we have estimated the primary production needed to sustain the carbon requirements of the endotherm top predators in the ecosystem. Estimation of the carbon requirements for crabeater seals of about 7 Mtonne C year−1 is extrapolated to a value for all endotherm predators of 15–30 Mtonne C year−1. Current data indicate that 70–80% of the diet of this suite of predators is zooplankton (predominantly the euphausiid krill), making for highly efficient transfer from primary production to top predators. Our best estimate of Southern Ocean primary production by this method is of the order of 1.7 Gtonne C year−1, or an averaged areal primary production of about 30–40 g C m−2 year−1. Our second approach is to estimate primary production from the drawdown of inorganic nutrients, based on the limited suite of studies from which an annual nutrient deficit can be calculated. Again, this indicates annual primary production of the order of 1.5 Gtonne. Although both methods have inherent uncertainties, taken together they provide a relatively robust constraint on annual primary production. For both methods to underestimate primary production by the 1–1.5 Gtonne C implied by the higher current estimates, carbon export from the Southern Ocean pelagic ecosystem would need to be much higher than is normally found in other oceans. |
|