Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Effects of periodic, low UVA radiation on cell characteristics and oxidative stress in the marine planktonic diatom Ditylum brightwellii
Rijstenbil, J.W. (2001). Effects of periodic, low UVA radiation on cell characteristics and oxidative stress in the marine planktonic diatom Ditylum brightwellii. Eur. J. Phycol. 36: 1-8. https://dx.doi.org/10.1080/09670260110001735138
In: European Journal of Phycology. Cambridge University Press/Taylor & Francis: Cambridge. ISSN 0967-0262; e-ISSN 1469-4433, more
Peer reviewed article  

Available in  Author 

Keywords
    Ditylum brightwellii (T.West) Grunow, 1885 [WoRMS]
    Marine/Coastal

Author  Top 
  • Rijstenbil, J.W., more

Abstract
    A continuous culture experiment was conducted with the marine diatom Ditylum brightwellii to assess the photo-oxidative effects of transition from dim light to high light at three successive levels. The focus was on temporary stress by ambient UVA at the water surface, via a simulation of the periodic ascent of diatoms caused by vertical mixing. Within a 14 h dim-light period, cells were exposed daily to 4 h of: (A) moderate PAR (100 [mu]mol photon m-2 s-1), (B) high PAR (400 [mu]mol photon m-2 s-1) and (C) high PAR (400-700 nm) plus 6·7 [mu]mol photon m-2 s-1 (2·2 W m-2) UVA. Cell shape, life cycle and sinking rates were not affected by high PAR per se (mode B). The daily 4 h high-irradiance mode C, with additional UVA (UVA: PAR = 0·016), caused an increase in cell diameter, a decrease in length axes, and a production of vegetative resting stages. Superoxide dismutase (SOD) activities, oxidized glutathione (GSSG) pools and malondialdehyde (MDA) contents increased as well, which indicates that this biologically effective UVA dose (0·78 W m-2) promoted active oxygen production, oxidative stress and lipid peroxidation. Sinking rates in UVA-exposed D. brightwellii were higher than in those grown without UVA. A close correlation between sinking rates and MDA contents suggests that UVA-induced lipid peroxidation has altered the membrane functions which regulate buoyancy in D. brightwellii. Although UVA-induced formation of resting cells will contribute to accelerated sinking, it is not evident that this can be considered as a stress avoidance mechanism under adverse light (UVA) conditions. D. brightwellii proved to be sensitive to transitions from shade to natural surface irradiance conditions. In coastal waters, such large diatom species may experience oxidative stress after a few hours' residence near the water surface at ambient UVA levels.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Author