Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Deep circulation variability through the eastern subpolar North Atlantic
Li, F.; Fu, Y.; Lozier, M.S.; Le Bras, I.A.; de Jong, M.F.; Wang, Y.; Sanchez-Franks, A. (2024). Deep circulation variability through the eastern subpolar North Atlantic. J. Clim. 37(23): 6221-6234. https://dx.doi.org/10.1175/jcli-d-23-0487.1
In: Journal of Climate. American Meteorological Society: Boston, MA. ISSN 0894-8755; e-ISSN 1520-0442, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Meridional overturning circulation; Ocean dynamics; Wind; In situ oceanic observations

Authors  Top 
  • Li, F.
  • Fu, Y.
  • Lozier, M.S.
  • Le Bras, I.A.
  • de Jong, M.F., more
  • Wang, Y.
  • Sanchez-Franks, A.

Abstract
    The export of the North Atlantic Deep Water (NADW) from the subpolar North Atlantic is known to affect the variability in the lower limb of the Atlantic meridional overturning circulation (AMOC). However, the respective impact from the transport in the upper NADW (UNADW) and lower NADW (LNADW) layers, and from the various transport branches through the boundary and interior flows, on the subpolar overturning variability remains elusive. To address this, the spatiotemporal characteristics of the circulation of NADW throughout the eastern subpolar basins are examined, mainly based on the 2014–20 observations from the transatlantic Overturning in the Subpolar North Atlantic Program (OSNAP) array. It reveals that the time-mean transport within the overturning’s lower limb across the eastern subpolar gyre [−13.0 ± 0.5 Sv (1 Sv ≡ 106 m3 s−1)] mostly occurs in the LNADW layer (−9.4 Sv or 72% of the mean), while the lower limb variability is mainly concentrated in the UNADW layer (57% of the total variance). This analysis further demonstrates a dominant role in the lower limb variability by coherent intraseasonal changes across the region that result from a basinwide barotropic response to changing wind fields. By comparison, there is just a weak seasonal cycle in the flows along the western boundary of the basins, in response to the surface buoyancy-induced water mass transformation.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors