Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Human trampling as short-term disturbance on intertidal mudflats: effects on macrofauna biodiversity and population dynamics of bivalves
Rossi, F.; Forster, R.M.; Montserrat, F.; Ponti, M.; Terlizzi, A.; Ysebaert, T.J.; Middelburg, J.J. (2007). Human trampling as short-term disturbance on intertidal mudflats: effects on macrofauna biodiversity and population dynamics of bivalves. Mar. Biol. (Berl.) 151(6): 2077-2090. dx.doi.org/10.1007/s00227-007-0641-0
In: Marine Biology: International Journal on Life in Oceans and Coastal Waters. Springer: Heidelberg; Berlin. ISSN 0025-3162; e-ISSN 1432-1793, more
Peer reviewed article  

Available in  Authors 

Keywords
    ANE, Netherlands, Westerschelde, PaulinaPolder
    Marine/Coastal

Authors  Top 
  • Rossi, F., more
  • Forster, R.M., more
  • Montserrat, F., more
  • Ponti, M.
  • Terlizzi, A., more
  • Ysebaert, T.J., more
  • Middelburg, J.J., more

Abstract
    The effect of physical disturbance in the form of trampling on the benthic environment of an intertidal mudflat was investigated. Intense trampling was created as unintended side-effect by benthic ecologists during field experiments in spring and summer 2005, when a mid-shore area of 25 × 25 m was visited twice per month by on average five researchers for a period of 8 months. At the putatively-impacted location (I) (25 × 25 m) and two nearby control locations (Cs) (25 × 25 m each), three sites (4 × 4 m) were randomly selected and at each site, three plots (50 × 50 cm) were sampled after 18 and 40 days from the end of the disturbance. Multivariate and univariate asymmetrical analyses tested for changes in the macrofaunal assemblage, biomass of microphytobenthos and various sediment properties (grain-size, water content, NH4 and NO3 concentrations in the pore water) between the two control locations (Cs) and the putatively-impacted location (I). There were no detectable changes in the sediment properties and microphytobenthos biomass, but was observed. Microphytobenthos and NH4 were correlated at I to the number of footprints, as estimated by the percentage cover of physical depressions. This indicated that trampling could have an impact at small scales, but more investigation is needed. Trampling, instead, clearly modified the abundance and population dynamics of the clam Macoma balthica (L.) and the cockle Cerastoderma edule (L.). There was a negative impact on adults of both species, probably because footsteps directly killed or buried the animals, provoking asphyxia. Conversely, trampling indirectly enhanced recruitment rate of M. balthica, while small-sized C. edule did not react to the trampling. It was likely that small animals could recover more quickly because trampling occurred during the growing season and there was a continuous supply of larvae and juveniles. In addition, trampling might have weakened negative adult-juvenile interactions between adult cockles and juvenile M. balthica, thus facilitating the recruitment. Our findings indicated that human trampling is a relevant source of disturbance for the conservation and management of mudflats. During the growing season recovery can be fast, but in the long-term it might lead towards the dominance of M. balthica to the cost of C. edule, thereby affecting ecosystem functioning.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors