Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Tidal exchange between a freshwater tidal marsh and an impacted estuary: the Scheldt estuary, Belgium
Van Damme, S.; Dehairs, F.; Tackx, M.; Beauchard, O.; Struyf, E.; Gribsholt, B.; Van Cleemput, O.; Meire, P. (2009). Tidal exchange between a freshwater tidal marsh and an impacted estuary: the Scheldt estuary, Belgium. Est., Coast. and Shelf Sci. 85(2): 197-207. https://dx.doi.org/10.1016/j.ecss.2009.08.005
In: Estuarine, Coastal and Shelf Science. Academic Press: London; New York. ISSN 0272-7714; e-ISSN 1096-0015, more
Peer reviewed article  

Available in  Authors 

Keywords
    Chemical compounds > Silicon compounds > Silica
    Cycles > Chemical cycles > Geochemical cycle > Biogeochemical cycle > Nutrient cycles
    Freshwaters
    Mass balance
    Particulates > Suspended particulate matter
    Tidal marshes
    Water bodies > Coastal waters > Coastal landforms > Coastal inlets > Estuaries
    Belgium: Schelde
    Marine/Coastal; Brackish water; Fresh water
Author keywords
    Scheldt estuary; mass balance; tidal freshwater marsh; silica; nutrient cycles; suspended particulate matter

Authors  Top 
  • Van Damme, S., more
  • Dehairs, F., more
  • Tackx, M., more
  • Beauchard, O.

Abstract
    Tidal marsh exchange studies are relatively simple tools to investigate the interaction between tidal marshes and estuaries. They have mostly been confined to only a few elements and to saltwater or brackish systems. This study presents mass-balance results of an integrated one year campaign in a freshwater tidal marsh along the Scheldt estuary (Belgium), covering oxygen, nutrients (N, P and Si), carbon, chlorophyll, suspended matter, chloride and sulfate. The role of seepage from the marsh was also investigated. A ranking between the parameters revealed that oxygenation was the strongest effect of the marsh on the estuarine water. Particulate parameters showed overall import. Export of dissolved silica (DSi) was more important than exchange of any other nutrient form. Export of DSi and import of total dissolved nitrogen (DIN) nevertheless contributed about equally to the increase of the Si:N ratio in the seepage water. The marsh had a counteracting effect on the long term trend of nutrient ratios in the estuary.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors