Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Influence of the Southern Annular Mode on the sea ice-ocean system
Lefebvre, W.; Goosse, H.; Timmermann, R.; Fichefet, T. (2004). Influence of the Southern Annular Mode on the sea ice-ocean system. J. Geophys. Res. 109(C9). dx.doi.org/10.1029/2004JC002403
In: Journal of Geophysical Research. American Geophysical Union: Richmond. ISSN 0148-0227; e-ISSN 2156-2202, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    SAM; Antarctic; sea ice-ocean system

Authors  Top 
  • Lefebvre, W., more
  • Goosse, H., more
  • Timmermann, R.
  • Fichefet, T., more

Abstract
    [1] The global sea ice - ocean model ORCA2-LIM, driven by the NCEP/NCAR ( National Centers for Environmental Prediction-National Center for Atmospheric Research) reanalysis daily 2-m air temperatures and 10-m winds and by monthly climatologies for precipitation, cloud cover, and relative humidity, is used to investigate the impact of the Southern Annular Mode (SAM) on the Antarctic sea ice-ocean system. Our results suggest that the response of the circumpolar Southern Ocean consists of an annular and a nonannular component. For the sea ice cover, the non-annular component seems to be the most important. The annular component strongly affects the overall patterns of the upper ocean circulation. When the SAM is in its positive phase, a northward surface Ekman drift, a downwelling at about 45°S, and an upwelling in the vicinity of the Antarctic continent are simulated. The non-annular component has a significant impact at the regional scale, especially in the Weddell, Ross, Amundsen, and Bellingshausen Seas. In those regions, the pressure pattern associated with the SAM induces meridional winds which advect warmer air in the Weddell Sea and around the Antarctic Peninsula and colder air in the Amundsen and Ross Seas. This implies a dipole response of sea ice to the SAM, with on average a decrease in ice area in the Weddell Sea and around the Antarctic Peninsula and an increase in the Ross and Amundsen Seas during years with a high SAM index. The long-term trend in the observed sea ice area does not appear to be related to the trend in the SAM index.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors