Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Longshore transport and sedimentation in a navigation channel at Blankenberge (Belgium)
Zimmermann, N.; Trouw, K.; Wang, L.; Mathys, M.; Delgado, R.; Verwaest, T. (2012). Longshore transport and sedimentation in a navigation channel at Blankenberge (Belgium), in: International Conference on Coastal Engineering (ICCE 2012), Santander, Spain, July 1-6 2012: book of papers. pp. [1-16]
In: (2012). International Conference on Coastal Engineering (ICCE 2012), Santander, Spain, July 1-6 2012: book of papers. Coastal Engineering Research Council of the American Society of Civil Engineers: Reston. , more

Available in  Authors 
Document type: Conference paper

Keyword
    Marine/Coastal
Author keywords
    Morphological modelling; XBeach; Input reduction; Channel sedimentation ; Acceleration

Authors  Top 
  • Zimmermann, N., more
  • Trouw, K., more
  • Wang, L.

Abstract
    The harbour of Blankenberge in Belgium experiences strong sedimentation in its entrance channel requiring frequent dredging. In order to investigate under which conditions this sedimentation is the most pronounced, the instationary coastal model XBeach is used. This paper presents results of long-term morphology modelling of channel sedimentation after applying a specific methodology for input reduction. A reduced time series representative of the annual wind-wave climate is run in combination with a representative tide and a constant morphological acceleration factor (morfac) to cover one year of erosion-sedimentation. While this approach does come with side effects, it has the important advantage to be easy to implement and to preserve part of the climate history compared to other approaches such as MorMerge and a time-varying morfac approach (described in the paper). With this approach and default settings, XBeach is shown to reproduce both qualitatively and quantitatively well the measured sedimentation. Results show that tide, wind and waves all contribute significantly to the total sediment transport, and that both continuous transport and individual storm events cause strong sedimentation. Some aspects of morphological modelling methodologies are discussed, relative to the calibration, input reduction and long-term modelling methods.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors