Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Modulation of the Southern Ocean cadmium isotope signature by ocean circulation and primary productivity
Abouchami, W.; Galer, S.J.G.; de Baar, H.J.W.; Alderkamp, A.C.; Middag, R.; Laan, P.; Feldmann, H.; Andreae, M.O. (2011). Modulation of the Southern Ocean cadmium isotope signature by ocean circulation and primary productivity. Earth Planet. Sci. Lett. 305(1-2): 83-91. dx.doi.org/10.1016/j.epsl.2011.02.044
In: Earth and Planetary Science Letters. Elsevier: Amsterdam. ISSN 0012-821X; e-ISSN 1385-013X, more
Peer reviewed article  

Available in  Authors 
    NIOZ: NIOZ files 255174

Author keywords
    Southern Ocean; cadmium isotopes; biogeochemical cycle; biologicalproductivity proxy

Authors  Top 
  • Abouchami, W.
  • Galer, S.J.G.
  • de Baar, H.J.W., more
  • Alderkamp, A.C.
  • Middag, R., more
  • Laan, P., more
  • Feldmann, H.
  • Andreae, M.O.

Abstract
    The High Nutrient Low Chlorophyll (HNLC) Southern Ocean plays a key role in regulating the biological pump and the global carbon cycle. Here we examine the efficacy of stable cadmium (Cd) isotope fractionation for detecting differences in biological productivity between regions. Our results show strong meridional Cd isotope and concentration gradients modulated by the Antarctic Fronts, with a clear biogeochemical divide located near 56 degrees S. The coincidence of the Cd isotope divide with the Southern Boundary of the Antarctic Circumpolar Current (ACC), together with evidence for northward advection of the Cd signal in the ACC, demonstrate that Cd isotopes trace surface ocean circulation regimes. The relationships between Cd isotope ratios and concentrations display two negative correlations, separating the ACC and Weddell Gyre into two distinct Cd isoscapes. These arrays are consistent with Rayleigh fractionation and imply a doubling of the isotope effect due to biological consumption of Cd during water transport from the Weddell Gyre into the ACC. The increase in magnitude of Cd isotope fractionation can be accounted for by differences in the phytoplankton biomass, community composition, and their physiological uptake mechanisms in the Weddell Gyre and ACC, thus linking Cd isotope fractionation to primary production and the global carbon cycle.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors