Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Genomic insights into bacterial DMSP transformations
Moran, M.A.; Reisch, C.R.; Kiene, R.P.; Whitman, W.B. (2012). Genomic insights into bacterial DMSP transformations, in: Carlson, C.A. et al. Ann. Rev. Mar. Sci. 4. Annual Review of Marine Science, 4: pp. 523-542. https://dx.doi.org/10.1146/annurev-marine-120710-100827
In: Carlson, C.A.; Giovannoni, S.J. (Ed.) (2012). Ann. Rev. Mar. Sci. 4. Annual Review of Marine Science, 4. Annual Reviews: Palo Alto. ISBN 978-0-8243-4504-4. 542 pp., more
In: Annual Review of Marine Science. Annual Reviews: Palo Alto, Calif. ISSN 1941-1405; e-ISSN 1941-0611, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    dimethylsulfoniopropionate, dimethylsulfide, metagenomics, metatranscriptomics, bacterioplankton

Authors  Top 
  • Moran, M.A.
  • Reisch, C.R.
  • Kiene, R.P.
  • Whitman, W.B.

Abstract
    Genomic and functional genomic methods applied to both model organisms and natural communities have rapidly advanced understanding of bacterial dimethylsulfoniopropionate (DMSP) degradation in the ocean. The genes for the two main pathways in bacterial degradation, routing DMSP to distinctly different biogeochemical fates, have recently been identified. The genes dmdA, -B, -C, and -D mediate the demethylation of DMSP and facilitate retention of carbon and sulfur in the marine microbial food web. The genes dddD, -L, -P, -Q, -W, and -Y mediate the cleavage of DMSP to dimethylsulfide (DMS), with important consequences for ocean-atmosphere sulfur flux. In ocean metagenomes, sufficient copies of these genes are present for 60% of surface ocean bacterial cells to directly participate in DMSP degradation. The factors that regulate these two competing pathways remain elusive, but gene transcription analyses of natural bacterioplankton communities are making headway in unraveling the intricacies of bacterial DMSP processing in the ocean.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors