Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Evaluation of in situ phytoplankton growth rates: a synthesis of data from varied approaches
Laws, E.A. (2013). Evaluation of in situ phytoplankton growth rates: a synthesis of data from varied approaches, in: Carlson, C.A. et al. Ann. Rev. Mar. Sci. 5. Annual Review of Marine Science, 5: pp. 247-268. https://dx.doi.org/10.1146/annurev-marine-121211-172258
In: Carlson, C.A.; Giovannoni, S.J. (Ed.) (2013). Ann. Rev. Mar. Sci. 5. Annual Review of Marine Science, 5. Annual Reviews: Palo Alto. ISBN 978-0-8243-4505-1. 569 pp., more
In: Annual Review of Marine Science. Annual Reviews: Palo Alto, Calif. ISSN 1941-1405; e-ISSN 1941-0611, more
Peer reviewed article  

Available in  Author 

Keyword
    Marine/Coastal
Author keywords
    dilution technique, grazing, nutrient limitation, pigment labeling, stability

Author  Top 
  • Laws, E.A.

Abstract
    The use of clean sampling and incubation methods and the development of biomass-independent techniques for estimating the rates of growth and grazing mortality of phytoplankton in the ocean have resulted in estimates of phytoplankton growth rates that are approximately twice those reported prior to roughly 1980. Light-saturated growth rates in tropical and subtropical latitudes correspond to a doubling time of roughly 1 day. The results of mesoscale nutrient-enrichment experiments and comparison of growth rates with estimates of strictly temperature-limited rates indicate that light-saturated growth rates are no more than 50% of nutrient-saturated values, a conclusion consistent with the resiliency of food webs to perturbations. Phytoplankton growth rates in the euphotic zone of the ocean appear to be controlled largely by the grazing activities of micro- and mesozooplankton and the recycling of nutrients associated with the catabolism of consumed prey.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Author