Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Constraining mid to late Holocene relative sea level change in the southern equatorial Pacific Ocean relative to the Society Islands, French Polynesia
Rashid, R.; Eisenhauer, A.; Stocchi, P.; Liebetrau, V.; Fietzke, J.; Rüggeberg, A.; Dullo, W.-C. (2014). Constraining mid to late Holocene relative sea level change in the southern equatorial Pacific Ocean relative to the Society Islands, French Polynesia. Geochem. Geophys. Geosyst. 15(6): 2601-2615. http://dx.doi.org/10.1002/2014GC005272
In: Geochemistry, Geophysics, Geosystems. American Geophysical Union: Washington, DC. ISSN 1525-2027; e-ISSN 1525-2027, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Rashid, R.
  • Eisenhauer, A.
  • Stocchi, P., more
  • Liebetrau, V.
  • Fietzke, J.
  • Rüggeberg, A., more
  • Dullo, W.-C.

Abstract
    Precisely quantifying the current climate-related sea level change requires accurate knowledge of long-term geological processes known as Glacial Isostatic Adjustments (GIA). Although the major postglacial melting phase is likely to have ended ~6–4 ka BP (before present), GIA is still significantly affecting the present-day vertical position of the mean sea surface and the sea bottom. Here we present empirical rsl (relative sea level) data based on U/Th dated fossil corals from reef platforms of the Society Islands, French Polynesia, together with the corresponding GIA-modeling. Fossil coral data constrain the timing and amplitude of rsl variations after the Holocene sea level maximum (HSLM). Upon correction for isostatic island subsidence, we find that local rsl was at least ~1.5?±?0.4 m higher than present at ~5.4 ka. Later, minor amplitude variations occurred until ~2 ka, when the rsl started dropping to its present position with a rate of ~0.4 mm/yr. The data match with predicted rsl curves based on global ice-sheet chronologies confirming the role of GIA-induced ocean siphoning effect throughout the mid to late Holocene. A long lasting Late Holocene highstand superimposed with second-order amplitudinal fluctuations as seen from our data suggest that the theoretical predicted timing of rsl change can still be refined pending future calibration

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors