Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation
Tine, M; Kuhl, H; Gagnaire, A; Louro, B; Desmarais, E; Martins, T; Hecht, J; Knaust, F; Belkhir, K; Klages, S; Dieterich, R; Stueber, K; Piferrer, F; Guinand, B; Bierne, N; Volckaert, F.A.M.; Bargelloni, L.; Power, M; Bonhomme, F; Canario, M; Reinhardt, R (2014). European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nature Comm. 5: 10 pp. https://dx.doi.org/10.1038/ncomms6770
In: Nature Communications. Nature Publishing Group: London. ISSN 2041-1723; e-ISSN 2041-1723, more
Peer reviewed article  

Available in  Authors 

Keywords
    Dicentrarchus labrax (Linnaeus, 1758) [WoRMS]
    Marine/Coastal

Authors  Top 
  • Tine, M
  • Kuhl, H
  • Gagnaire, A
  • Louro, B
  • Desmarais, E
  • Martins, T
  • Hecht, J
  • Knaust, F
  • Belkhir, K
  • Klages, S
  • Dieterich, R
  • Stueber, K
  • Piferrer, F
  • Guinand, B
  • Bierne, N
  • Volckaert, F.A.M., more
  • Bargelloni, L.
  • Power, M
  • Bonhomme, F
  • Canario, M
  • Reinhardt, R

Abstract
    The European sea bass (Dicentrarchus labrax) is a temperate-zone euryhaline teleost of prime importance for aquaculture and fisheries. This species is subdivided into two naturally hybridizing lineages, one inhabiting the north-eastern Atlantic Ocean and the other the Mediterranean and Black seas. Here we provide a high-quality chromosome-scale assembly of its genome that shows a high degree of synteny with the more highly derived teleosts. We find expansions of gene families specifically associated with ion and water regulation, highlighting adaptation to variation in salinity. We further generate a genome-wide variation map through RAD-sequencing of Atlantic and Mediterranean populations. We show that variation in local recombination rates strongly influences the genomic landscape of diversity within and differentiation between lineages. Comparing predictions of alternative demographic models to the joint allele-frequency spectrum indicates that genomic islands of differentiation between sea bass lineages were generated by varying rates of introgression across the genome following a period of geographical isolation.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors