Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

A simplified analytical method to estimate the resistance of plane lock gates impacted by river barges
Buldgen, L.; Le Sourne, H.; Rigo, P. (2015). A simplified analytical method to estimate the resistance of plane lock gates impacted by river barges. Mar. Struct. 43: 61-86. https://dx.doi.org/10.1016/j.marstruc.2015.06.001
In: Marine Structures. Elsevier: Oxford. ISSN 0951-8339; e-ISSN 1873-4170, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    Ship collision; Crashworthiness; Super-element method; Upper-boundmethod

Authors  Top 
  • Buldgen, L., more
  • Le Sourne, H.
  • Rigo, P., more

Abstract
    This paper presents a simplified analytical method to evaluate the resistance of a single plating lock gate impacted by a river barge. The approach is based on the assumption that the gate behavior may be divided into two successive phases. At the beginning of the collision, local crushing of some structural elements occurs concomitantly with small overall elastic motion of the entire gate. Then, when the penetration of the barge into the gate becomes important, a global plastic mechanism develops over the entire structure. In addition to the membrane and bending deformations occurring classically in such collisions, the particular flat shape of the striking barge bow leads to shear deformations near the gate edges. For all these deformation modes, closed-form expressions of the gate resistance are derived for both local and global deformation phases by applying the upper-bound method. These analytical developments are then validated through comparisons with numerical solutions obtained from non-linear finite-element simulations.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors