Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Screening for induced herbivore resistance in Swedish intertidal seaweeds
Toth, G.B. (2007). Screening for induced herbivore resistance in Swedish intertidal seaweeds. Mar. Biol. (Berl.) 151(4): 1597-1604. http://dx.doi.org/10.1007/s00227-007-0605-4
In: Marine Biology: International Journal on Life in Oceans and Coastal Waters. Springer: Heidelberg; Berlin. ISSN 0025-3162; e-ISSN 1432-1793, more
Peer reviewed article  

Available in  Author 

Keyword
    Marine/Coastal

Author  Top 

Abstract
    Terrestrial plants have long been known to induce resistance towards herbivores in response to direct grazing, and strong evidence of inter-plant information transfer through volatile signals has been reported recently. Still, little is known about information exchange in aquatic plant–herbivore interactions. In this study, 12 Swedish seaweed species were exposed either to direct grazing by a generalist crustacean herbivore (Idotea granulosa), or to waterborne signals produced by actively feeding herbivores for 1 week. In order to test for the presence of induced chemical resistance in the different seaweed species, the dried and homogenized seaweed tissues were incorporated into an agar matrix, and herbivores were allowed to choose between the resulting control and induced artificial diets in two different two-choice feeding trials. The herbivores were actively feeding from all seaweed species in the induction experiments, although the amount of seaweed tissue consumed differed significantly between species. A chemically based induced herbivore resistance was found in response to direct grazing in four of the tested seaweed species (two red, one brown, and one green seaweed species). Furthermore, four seaweeds (one red, two brown, and one green seaweed species) induced resistance towards further grazing in response to waterborne chemical signals. Several seaweed species responded differently when exposed to different herbivore-related cues, indicating that both cues and responses can be highly specific. The results show that herbivore-induced resistance is present in 7 of 12 of the tested Swedish seaweed species, but that different signals (i.e., direct grazing and waterborne cues) elicit complex responses in the seaweeds.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Author