Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Altered brain ion gradients following compensation for elevated CO2 are linked to behavioural alterations in a coral reef fish
Heuer, R.M.; Welch, M.J.; Rummer, J.L.; Munday, P.L.; Grosell, M. (2016). Altered brain ion gradients following compensation for elevated CO2 are linked to behavioural alterations in a coral reef fish. NPG Scientific Reports 6(33216): 10 pp. http://dx.doi.org/10.1038/srep33216
In: Scientific Reports (Nature Publishing Group). Nature Publishing Group: London. ISSN 2045-2322; e-ISSN 2045-2322, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Heuer, R.M.
  • Welch, M.J.
  • Rummer, J.L., more
  • Munday, P.L.
  • Grosell, M.

Abstract
    Neurosensory and behavioural disruptions are some of the most consistently reported responses upon exposure to ocean acidification-relevant CO2 levels, especially in coral reef fishes. The underlying cause of these disruptions is thought to be altered current across the GABA(A) receptor in neuronal cells due to changes in ion gradients (HCO3 and/or Cl) that occur in the body following compensation for elevated ambient CO2. Despite these widely-documented behavioural disruptions, the present study is the first to pair a behavioural assay with measurements of relevant intracellular and extracellular acid-base parameters in a coral reef fish exposed to elevated CO2. Spiny damselfish (Acanthochromis polyacanthus) exposed to 1900 mu atm CO2 for 4 days exhibited significantly increased intracellular and extracellular HCO3- concentrations and elevated brain pHi compared to control fish, providing evidence of CO2 compensation. As expected, high CO2 exposed damselfish spent significantly more time in a chemical alarm cue (CAC) than control fish, supporting a potential link between behavioural disruption and CO2 compensation. Using HCO3- measurements from the damselfish, the reversal potential for GABA(A) (E-GABA) was calculated, illustrating that biophysical properties of the brain during CO2 compensation could change GABA(A) receptor function and account for the behavioural disturbances noted during exposure to elevated CO2.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors