Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Biokinetics of selected heavy metals and radionuclides in two marine macrophytes: the seagrass Posidonia oceanica and the alga Caulerpa taxifolia
Warnau, M.; Fowler, S.W.; Teyssié, J.-L. (1996). Biokinetics of selected heavy metals and radionuclides in two marine macrophytes: the seagrass Posidonia oceanica and the alga Caulerpa taxifolia. Mar. Environ. Res. 41(4): 343-362. https://dx.doi.org/10.1016/0141-1136(95)00025-9
In: Marine Environmental Research. Applied Science Publishers: Barking. ISSN 0141-1136; e-ISSN 1879-0291, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Warnau, M., more
  • Fowler, S.W.
  • Teyssié, J.-L.

Abstract
    Uptake and loss kinetics of Zn, Ag, Cd, 134Cs, and 241Am by shoots of the seagrass Posidonia oceanica and fronds of the green alga Caulerpa taxifolia were determined in controlled laboratory radiotracer experiments using low contaminant concentrations. The two species accumulated most of the elements efficiently. The only exceptions were 134Cs in both P. oceanica and C. taxifolia and Cd in C. Taxifolia (concentration factors ⩽ 6.4). Steady state in uptake was reached in C. taxifolia for each element except Ag. In P. oceanica, steady state was noted for the uptake of Ag and 134Cs whereas Zn, Cd, and 241Am were linearly accumulated during the course of the experiment (15 d). With respect to relative metal bioavailability, the different compartments of P. oceanica shoots were generally ranked in the order: leaf epiphytes > adult leaves = intermediate leaves > leaf sheaths. The long-lived component of the loss kinetics for each element in P. oceanica was characterized by a relatively short biological half-life (Tb12 ⩽ 28 d). However, observations for the individual compartments indicated that adult leaves had a high retention capacity for Ag and 134Cs, with virtually 100% retained after 21 d in uncontaminated sea water. In C. taxifolia, the long-lived component of the loss kinetics for each element was characterized by a Tb12 value that was not significantly different from infinity, an observation which suggests that a substantial fraction of the metal or radionuclide incorporated during a contamination event would be irreversibly bound by this algal species.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors