Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Hamiltonian discontinuous Galerkin FEM for linear, stratified (in)compressible Euler equations: internal gravity waves
van Oers, A.M.; Maas, L.R.M.; Bokhove, O. (2017). Hamiltonian discontinuous Galerkin FEM for linear, stratified (in)compressible Euler equations: internal gravity waves. J. Comput. Physics 330: 770-793. dx.doi.org/10.1016/j.jcp.2016.10.032
In: Journal of Computational Physics. Academic Press: Amsterdam etc.. ISSN 0021-9991; e-ISSN 1090-2716, more
Peer reviewed article  

Available in  Authors 

Author keywords
    Linear stratified Euler equations; Hamiltonian structure; Discontinuous Galerkin method; Internal gravity waves; Wave attractors

Authors  Top 
  • van Oers, A.M., more
  • Maas, L.R.M., more
  • Bokhove, O.

Abstract
    The linear equations governing internal gravity waves in a stratified ideal fluid possess a Hamiltonian structure. A discontinuous Galerkin finite element method has been developed in which this Hamiltonian structure is discretized, resulting in conservation of discrete analogs of phase space and energy. This required (i) the discretization of the Hamiltonian structure using alternating flux functions and symplectic time integration, (ii)the discretization of a divergence-free velocity field using Dirac’s theory of constraints and (iii)the handling of large-scale computational demands due to the 3-dimensional nature of internal gravity waves and, in confined, symmetry-breaking fluid domains, possibly its narrow zones of attraction.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors