Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Recent reticulate evolution in the ecologically dominant lineage of Coccolithophores
Bendif, E.M.; Probert, I.; Diaz-Rosas, F.; Thomas, D.; van den Engh, G.; Young, J.R.; von Dassow, P. (2016). Recent reticulate evolution in the ecologically dominant lineage of Coccolithophores. Front. Microbiol. 7. https://dx.doi.org/10.3389/fmicb.2016.00784
In: Frontiers in Microbiology. Frontiers Media: Lausanne. ISSN 1664-302X; e-ISSN 1664-302X, more
Peer reviewed article  

Available in  Authors 

Keywords
    Marine Sciences
    Marine Sciences > Marine Genomics
    Scientific Community
    Scientific Publication
    Marine/Coastal
Author keywords
    coccolithophores; cyto-nuclear discordance; Emiliania; evolution;Gephyrocapsa; introgressive hybridization; diversity; Reticulofenestra

Project Top | Authors 
  • Association of European marine biological laboratories, more

Authors  Top 
  • Bendif, E.M.
  • Probert, I.
  • Diaz-Rosas, F.
  • Thomas, D.
  • van den Engh, G.
  • Young, J.R.
  • von Dassow, P.

Abstract
    The coccolithophore family Noëlaerhabdaceae contains a number of taxa that are very abundant in modern oceans, including the cosmopolitan bloom-forming Emiliania huxleyi. Introgressive hybridization has been suggested to account for incongruences between nuclear, mitochondrial and plastidial phylogenies of morphospecies within this lineage, but the number of species cultured to date remains rather limited. Here, we present the characterization of 5 new Noëlaerhabdaceae culture strains isolated from samples collected in the south-east Pacific Ocean. These were analyzed morphologically using scanning electron microscopy and phylogenetically by sequencing 5 marker genes (nuclear 18S and 28S rDNA, plastidial tufA, and mitochondrial cox1 and cox3 genes). Morphologically, one of these strains corresponded to Gephyrocapsa ericsonii and the four others to Reticulofenestra parvula. Ribosomal gene sequences were near identical between these new strains, but divergent from G. oceanica, G. muellerae, and E. huxleyi. In contrast to the clear distinction in ribosomal phylogenies, sequences from other genomic compartments clustered with those of E. huxleyi strains with which they share an ecological range (i.e., warm temperate to tropical waters). These data provide strong support for the hypothesis of past (and potentially ongoing) introgressive hybridization within this ecologically important lineage and for the transfer of R. parvula to Gephyrocapsa. These results have important implications for understanding the role of hybridization in speciation in vast ocean meta-populations of phytoplankton.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors