Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Morphological and phylogenetic characterization of new Gephyrocapsa isolates suggests introgressive hybridization in the Emiliania/Gephyrocapsa complex (Haptophyta)
Bendif, E.M.; Probert, I.; Young, J.R.; von Dassow, P. (2015). Morphological and phylogenetic characterization of new Gephyrocapsa isolates suggests introgressive hybridization in the Emiliania/Gephyrocapsa complex (Haptophyta). Protist 166(3): 323-336. https://dx.doi.org/10.1016/j.protis.2015.05.003
In: Protist. Elsevier: Jena. ISSN 1434-4610; e-ISSN 1618-0941, more
Peer reviewed article  

Available in  Authors 

Keywords
    Marine Sciences
    Marine Sciences > Marine Genomics
    Scientific Community
    Scientific Publication
    Marine/Coastal
Author keywords
    Coccolithophores; Emiliania huxleyi; Gephyrocapsa muellerae;Gephyrocapsa oceanica; hybridization; species concept; phylogeny

Project Top | Authors 
  • Association of European marine biological laboratories, more

Authors  Top 
  • Bendif, E.M.
  • Probert, I.
  • Young, J.R.
  • von Dassow, P.

Abstract
    The coccolithophore genus Gephyrocapsa contains a cosmopolitan assemblage of pelagic species, including the bloom-forming Gephyrocapsa oceanica, and is closely related to the emblematic coccolithophore Emiliania huxleyi within the Noëlaerhabdaceae. These two species have been extensively studied and are well represented in culture collections, whereas cultures of other species of this family are lacking. We report on three new strains of Gephyrocapsa isolated into culture from samples from the Chilean coastal upwelling zone using a novel flow cytometric single-cell sorting technique. The strains were characterized by morphological analysis using scanning electron microscopy and phylogenetic analysis of 6 genes (nuclear 18S and 28S rDNA, plastidial 16S and tufA, and mitochondrial cox1 and cox3 genes). Morphometric features of the coccoliths indicate that these isolates are distinct from G. oceanica and best correspond to G. muellerae. Surprisingly, both plastidial and mitochondrial gene phylogenies placed these strains within the E. huxleyi clade and well separated from G. oceanica isolates, making Emiliania appear polyphyletic. The only nuclear sequence difference, 1 bp in the 28S rDNA region, also grouped E. huxleyi with the new Gephyrocapsa isolates and apart from G. oceanica. Specifically, the G. muellerae morphotype strains clustered with the mitochondrial β clade of E. huxleyi, which, like G. muellerae, has been associated with cold (temperate and sub-polar) waters. Among putative evolutionary scenarios that could explain these results we discuss the possibility that E. huxleyi is not a valid taxonomic unit, or, alternatively the possibility of past hybridization and introgression between each E. huxleyi clade and older Gephyrocapsa clades. In either case, the results support the transfer of Emiliania to Gephyrocapsa. These results have important implications for relating morphological species concepts to ecological and evolutionary units of diversity.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors