Effects of live and post-mortem shell structures of invasive Pacific oysters and native blue mussels on macrofauna and fish
Norling, P.; Lindegarth, M.; Lindegarth, S.; Strand, A. (2015). Effects of live and post-mortem shell structures of invasive Pacific oysters and native blue mussels on macrofauna and fish. Mar. Ecol. Prog. Ser. 518: 123-138. https://dx.doi.org/10.3354/meps11044 In: Marine Ecology Progress Series. Inter-Research: Oldendorf/Luhe. ISSN 0171-8630; e-ISSN 1616-1599, more | |
Keywords | Environmental Management Environmental Management > Environmental Management General Environmental Managers & Monitoring Marine Sciences Marine Sciences > Biodiversity Policy Makers / Decision Makers Scientific Community Scientific Publication Marine/Coastal | Author keywords | Non-indigenous species; Ecosystem engineering; Habitat modification;Macroinvertebrates; Infauna; Epibenthic fauna; Sediment community;Crassostrea gigas; Mytilus edulis |
Project | Top | Authors | - Association of European marine biological laboratories, more
|
Authors | | Top | - Norling, P.
- Lindegarth, M.
- Lindegarth, S.
- Strand, A.
| | |
Abstract | Blue mussels Mytilus edulis and the invasive Pacific oyster Crassostrea gigas are both ecosystem engineering species which modify the environment, thus having large effects on associated species. With the introduction of the Pacific oyster, a new biogenic structure has been added to subtidal sediment habitats in Scandinavia. By conducting a field experiment, the effects of live and post-mortem shell structures of C. gigas and M. edulis on associated infauna, epibenthic fauna and fish on the Swedish west coast were evaluated. Plots with 5 different treatments (live Pacific oysters, oyster shells, live blue mussels, mussel shells and sand control) were constructed on bare sandy sediment at 2 subtidal localities. Epibenthic macrofauna and fish were sampled with a drop trap, and sediment and infauna samples were collected with sediment cores. Live bivalve treatments had significant effects on organic content of the sediment; however, no treatment effects on infauna were found. In contrast, abundance and biomass of epibenthic fauna increased 4 to 8 times and species richness increased in the presence of the bivalves or their shells, compared to the sand control. Epibenthic fauna abundance and biomass was higher in the oyster shell treatment compared to the live bivalve treatments, which in turn had higher abundance and biomass than the mussel shell treatment. In general, the mussel shell treatment favoured small crustaceans, while the oyster shell and live bivalve treatments favoured fish and larger invertebrate species. Based on these results, we conclude that further establishment of the Pacific oyster in Swedish waters will cause large changes to community structure of benthic macrofauna and fish. |
|