Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Increasing pCO2 correlates with low concentrations of intracellular dimethylsulfoniopropionate in the sea anemone Anemonia viridis
Borell, E.M.; Steinke, M.; Horwitz, R.; Fine, M. (2014). Increasing pCO2 correlates with low concentrations of intracellular dimethylsulfoniopropionate in the sea anemone Anemonia viridis. Ecol. Evol. 4(4): 441-449. https://dx.doi.org/10.1002/ece3.946
In: Ecology and Evolution. John Wiley & Sons: Chichester. ISSN 2045-7758; e-ISSN 2045-7758, more
Peer reviewed article  

Available in  Authors 

Keywords
    Climate Change
    Climate Change > Climate Change General
    Environmental Managers & Monitoring
    Marine Sciences
    Marine Sciences > Oceanography
    Scientific Community
    Scientific Publication
    Marine/Coastal
Author keywords
    Chlorophyll;CO2 vent; DMSP ;primary research article;protein;superoxide dismutase;zooxanthellae

Project Top | Authors 
  • Association of European marine biological laboratories, more

Authors  Top 
  • Borell, E.M.
  • Steinke, M.
  • Horwitz, R.
  • Fine, M.

Abstract
    Marine anthozoans maintain a mutualistic symbiosis with dinoflagellates that are prolific producers of the algal secondary metabolite dimethylsulfoniopropionate (DMSP), the precursor of the climate-cooling trace gas dimethyl sulfide (DMS). Surprisingly, little is known about the physiological role of DMSP in anthozoans and the environmental factors that regulate its production. Here, we assessed the potential functional role of DMSP as an antioxidant and determined how future increases in seawater pCO2 may affect DMSP concentrations in the anemone Anemonia viridis along a natural pCO2 gradient at the island of Vulcano, Italy. There was no significant difference in zooxanthellae genotype and characteristics (density of zooxanthellae, and chlorophyll a) as well as protein concentrations between anemones from three stations along the gradient, V1 (3232 μatm CO2), V2 (682 μatm) and control (463 μatm), which indicated that A. viridis can acclimate to various seawater pCO2. In contrast, DMSP concentrations in anemones from stations V1 (33.23 ± 8.30 fmol cell−1) and V2 (34.78 ± 8.69 fmol cell−1) were about 35% lower than concentrations in tentacles from the control station (51.85 ± 12.96 fmol cell−1). Furthermore, low tissue concentrations of DMSP coincided with low activities of the antioxidant enzyme superoxide dismutase (SOD). Superoxide dismutase activity for both host (7.84 ± 1.37 U·mg−1 protein) and zooxanthellae (2.84 ± 0.41 U·mg−1 protein) at V1 was 40% lower than at the control station (host: 13.19 ± 1.42; zooxanthellae: 4.72 ± 0.57 U·mg−1 protein). Our results provide insight into coastal DMSP production under predicted environmental change and support the function of DMSP as an antioxidant in symbiotic anthozoans.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors