Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Towards an unknown fate: the floating behaviour of recently abscised propagules from wide ranging Rhizophoraceae mangrove species
Tonné, N.; Beeckman, H.; Robert, E.M.R.; Koedam, N. (2017). Towards an unknown fate: the floating behaviour of recently abscised propagules from wide ranging Rhizophoraceae mangrove species. Aquat. Bot. 140: 23-33. https://dx.doi.org/10.1016/j.aquabot.2017.01.008
In: Aquatic Botany. Elsevier Science: Tokyo; Oxford; New York; London; Amsterdam. ISSN 0304-3770; e-ISSN 1879-1522, more
Peer reviewed article  

Available in  Authors 

Keywords
    Bruguiera gymnorrhiza (L.) Lam. [WoRMS]; Ceriops tagal (Perr.) C.B. Robinson [WoRMS]; Rhizophora mucronata Poir. [WoRMS]
    Marine/Coastal; Brackish water; Fresh water
Author keywords
    Bruguiera gymnorrhiza; Buoyancy; Ceriops tagal; Hydrochory;Intercellular space; Light microscopy; Rhizophora mucronata; Vivipary

Authors  Top 

Abstract
    The persistence of a mangrove ecosystem depends on the potential of its propagules to disperse. In case of the Rhizophoraceae mangrove species, propagules are elongated cylinder-shaped seedlings that have an initial ability to float upon abscission from the parent tree. During the hydrochoric dispersal period, propagule traits (e.g. volume and density) change over time, which in parallel influences propagule buoyancy behaviour. Recently abscised, mature propagules of three rhizophoracean mangrove species (Bruguiera gymnorrhiza (L.) Sav., Ceriops tagal (Perr.) C.B. Rob., Rhizophora mucronata Lam.) were submitted to a three-month floating experiment to investigate the timing and pattern in their buoyancy behaviour linked to changes in propagule density. Anatomical analyses of the aerenchymatous tissues complemented the floatation data. Initial propagule density (between 0.96 (C. tagal) and 0.99 g cm−3 (B. gymnorrhiza and R. mucronata)) was on slightly lower than that of seawater and increased over time in all species but at dissimilar rates. Intra-individual density increased from the plumule- towards the radicle end, and corresponded with a decrease in proportion of intercellular surface area per unit area. The interplay between propagule traits and surface water conditions determine the fate of each propagule and its capacity to escape the local forest and reach open water. The combination of techniques used and hence combination of data obtained in this study, contribute to an increased understanding of mangrove forest dynamics: the potential and the limits therein to expand the species range or to replenish existing populations with new recruits.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors