Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Seasonal plasticity of auditory saccular sensitivity in "sneaker" type II male plainfin midshipman fish, Porichthys notatus
Bhandiwad, A.A.; Whitchurch, E.A.; Colleye, O.; Zeddies, D.G.; Sisneros, J.A. (2017). Seasonal plasticity of auditory saccular sensitivity in "sneaker" type II male plainfin midshipman fish, Porichthys notatus. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 203(3): 211-222. https://dx.doi.org/10.1007/s00359-017-1157-9
In: Journal of Comparative Physiology A. Sensory, Neural, and Behavioral Physiology. Springer: Heidelberg; Berlin. ISSN 0340-7594; e-ISSN 1432-1351, more
Peer reviewed article  

Available in  Authors 

Keywords
    Teleostei [WoRMS]
    Marine/Coastal
Author keywords
    Hearing; Particle acceleration; Teleost; Saccule; Hair cells

Authors  Top 
  • Bhandiwad, A.A.
  • Whitchurch, E.A.
  • Colleye, O., more
  • Zeddies, D.G.
  • Sisneros, J.A.

Abstract
    Adult female and nesting (type I) male midshipman fish (Porichthys notatus) exhibit an adaptive form of auditory plasticity for the enhanced detection of social acoustic signals. Whether this adaptive plasticity also occurs in “sneaker” type II males is unknown. Here, we characterize auditory-evoked potentials recorded from hair cells in the saccule of reproductive and non-reproductive “sneaker” type II male midshipman to determine whether this sexual phenotype exhibits seasonal, reproductive state-dependent changes in auditory sensitivity and frequency response to behaviorally relevant auditory stimuli. Saccular potentials were recorded from the middle and caudal region of the saccule while sound was presented via an underwater speaker. Our results indicate saccular hair cells from reproductive type II males had thresholds based on measures of sound pressure and acceleration (re. 1 µPa and 1 ms−2, respectively) that were ~8–21 dB lower than non-reproductive type II males across a broad range of frequencies, which include the dominant higher frequencies in type I male vocalizations. This increase in type II auditory sensitivity may potentially facilitate eavesdropping by sneaker males and their assessment of vocal type I males for the selection of cuckoldry sites during the breeding season.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors