Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Combined impacts of ocean acidification and dysoxia on survival and growth of four agglutinating foraminifera
van Dijk, I.; Bernhard, J.M.; de Nooijer, L.J.; Nehrke, G.; Wit, J.C.; Reichart, G.-J. (2017). Combined impacts of ocean acidification and dysoxia on survival and growth of four agglutinating foraminifera. J. Foramin. Res. 47(3): 294-303. https://dx.doi.org/10.2113/gsjfr.47.3.294
In: Journal of Foraminiferal Research. Cushman Foundation for Foraminiferal Research: Washington. ISSN 0096-1191; e-ISSN 1943-264X, more
Peer reviewed article  

Available in  Authors 
    NIOZ: NIOZ files 318786

Authors  Top 
  • van Dijk, I., more
  • Bernhard, J.M.
  • de Nooijer, L.J., more
  • Nehrke, G.
  • Wit, J.C.
  • Reichart, G.-J., more

Abstract
    Agglutinated foraminifera create a shell by assembling particles from the sediment and comprise a significant part of the foraminiferal fauna. Despite their high abundance and diversity, their response to environmental perturbations and climate change is relatively poorly studied. Here we present results from a culture experiment with four different species of agglutinating foraminifera incubated in artificial substrate and exposed to different pCO2 conditions, in either dysoxic or oxic settings. We observed species-specific reactions (i.e., reduced or increased chamber formation rates) to dysoxia and/or acidification. While chamber addition and/or survival rates of Miliammina fusca and Trochammina inflata were negatively impacted by either dysoxia or acidification, respectively, Textularia tenuissima and Spiroplectammina biformis had the highest survivorship and chamber addition rates with combined high pCO2 (2000 ppm) and low O2 (0.7 ml/l) conditions. The differential response of these species indicates that not all agglutinating foraminifera are well-adapted to conditions induced by predicted climate change, which may result in a shift in foraminiferal community composition.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors