Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Major changes in the ecology of the Wadden Sea: Human impacts, ecosystem engineering and sediment dynamics
Eriksson, B.K.; van der Heide, T.; van de Koppel, J.; Piersma, T.; van der Veer, H.W.; Olff, H. (2010). Major changes in the ecology of the Wadden Sea: Human impacts, ecosystem engineering and sediment dynamics. Ecosystems 13(5): 752-764. https://dx.doi.org/10.1007/s10021-010-9352-3
In: Ecosystems. Springer: New York, NY. ISSN 1432-9840; e-ISSN 1435-0629, more
Peer reviewed article  

Available in  Authors 

Keyword
Author keywords
    Bivalves; deposit feeders; internal regulation; human transforma; soft sediment food-webs; historic trends

Authors  Top 
  • Eriksson, B.K.
  • van der Heide, T.
  • van de Koppel, J., more
  • Piersma, T., more
  • van der Veer, H.W., more
  • Olff, H.

Abstract
    Shallow soft-sediment systems are mostly dominated by species that, by strongly affecting sediment dynamics, modify their local environment. Such ecosystem engineering species can have either sediment-stabilizing or sediment-destabilizing effects on tidal flats. They interplay with abiotic forcing conditions (wind, tide, nutrient inputs) in driving the community structure and generating spatial heterogeneity, determining the composition of different communities of associated species, and thereby affecting the channelling of energy through different compartments in the food web. This suggests that, depending on local species composition, tidal flats may have conspicuously different geomorphology and biological functions under similar external conditions. Here we use a historical reconstruction of benthic production in the Wadden Sea to construct a framework for the relationships between human impacts, ecosystem engineering and sediment dynamics. We propose that increased sediment disturbances by human exploitation interfere with biological controls of sediment dynamics, and thereby have shifted the dominant compartments of both primary and secondary production in the Wadden Sea, transforming the intertidal from an internally regulated and spatially heterogeneous, to an externally regulated and spatially homogenous system. This framework contributes to the general understanding of the interaction between biological and environmental control of ecosystem functioning, and suggests a general framework for predicting effects of human impacts on soft-bottom ecosystems.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors