Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Effects of microbial processes and CaCO3 dynamics on inorganic carbon cycling in snow-covered Arctic winter sea ice
Søgaard, D. H. ; Deming, J.W.; Meire, L.; Rysgaard, S. (2019). Effects of microbial processes and CaCO3 dynamics on inorganic carbon cycling in snow-covered Arctic winter sea ice. Mar. Ecol. Prog. Ser. 611: 31-44. https://dx.doi.org/10.3354/meps12868
In: Marine Ecology Progress Series. Inter-Research: Oldendorf/Luhe. ISSN 0171-8630; e-ISSN 1616-1599, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    High Arctic; First-year sea ice; Polynya ice; Snow cover; Primary production; Bacterial production; CaCO3

Authors  Top 
  • Søgaard, D. H.
  • Deming, J.W.
  • Meire, L., more
  • Rysgaard, S.

Abstract
    Few combined measurements of primary and bacterial productivity exist for Arctic sea ice, particularly during winter, making it difficult to assess the relative importance of these microbial processes for carbon cycling in sea ice. Furthermore, the occurrence of calcium carbonate (CaCO3 ), though well-documented in sea ice, is poorly described for the overlying snow. To address these gaps, we investigated primary and bacterial productivity and carbon dynamics at 2 contrasting locations: (1) a landfast site, with thick snow-covered first-year sea ice, and (2) a polynya site, with thin snow-covered young (<1 wk) sea ice. Comparisons of bacterial carbon demand and primary production indicated net heterotrophy in the sea ice at both locations, with a net carbon consumption rate of 0.87 to 1.86 mg C m-2 d-1 derived from sea ice bacterial carbon demand of 0.93 to 2.00 mg C m-2 d-1 and gross primary production of 0.06 to 0.14 mg C m-2 d-1. As these microbial rates are very low, physical processes largely account for the observed CO2 depletion in the ice. High CaCO3 concentrations of 250 to 430 µmol kg-1 were measured in the snow covers which, though similar to concentrations in the underlying ice, are orders of magnitude higher than those reported from the few studies available on CaCO3 in snow. Together these results suggest that the role of biology in modulating inorganic carbon cycling in ice, which can be important in spring, is minor as compared to abiotic processes.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors