Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Silicic acid limitation drives bloom termination and potential carbon sequestration in an Arctic bloom
Krause, J.W.; Schulz, I.K.; Rowe, K.A.; Dobbins, W.; Winding, M.H.S.; Sejr, M.K.; Duarte, C. M.; Agusti, S. (2019). Silicic acid limitation drives bloom termination and potential carbon sequestration in an Arctic bloom. NPG Scientific Reports 9(1): 11 pp. https://dx.doi.org/10.1038/s41598-019-44587-4
In: Scientific Reports (Nature Publishing Group). Nature Publishing Group: London. ISSN 2045-2322; e-ISSN 2045-2322, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Krause, J.W.
  • Schulz, I.K.
  • Rowe, K.A.
  • Dobbins, W.
  • Winding, M.H.S.
  • Sejr, M.K.
  • Duarte, C. M., more
  • Agusti, S.

Abstract
    The spring diatom bloom in the Arctic Ocean accounts for significant annual primary production leading to the most rapid annual drawdown of water-column pCO2. Late-winter waters in the Atlantic Arctic & Subarctic Provinces (AASP) have lower silicic acid concentrations than nitrate, which suggests diatom blooms may deplete Si before N. Here we test a facet of the hypothesis that silicic acid limitation terminates the spring diatom bloom in the AASP and the sinking of the senescent and dead diatoms helps drive carbon sequestration. During a 6-week study, diatoms bloomed and progressively consumed silicic acid to where it limited their growth. The onset of growth limitation was concurrent with the minimum pCO2 in the surface waters and increases in both the proportion of dead diatoms and the diatom assemblage sedimentation rate. Data reanalysis within the AASP shows a highly significant and positive correlation between silicic acid and pCO2 in the surface waters, but no significant relationship with nitrate and pCO2 was observed unless data were smoothed. Therefore, understanding the future of the AASP spring diatom bloom requires models that explicitly consider changes in silicic acid supply as a driver of this process.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors