Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Marine adaptations in human kidneys
Williams, M. (2019). Marine adaptations in human kidneys, in: Vaneechoutte, M. et al. Was man more aquatic in the past? Fifty years after Alister Hardy: waterside hypotheses of human evolution. pp. 148-155
In: Vaneechoutte, M.; Kuliukas, A.; Verhaegen, M. (Ed.) (2019). Was man more aquatic in the past? Fifty years after Alister Hardy: waterside hypotheses of human evolution. Bentham Science Publishers: Sharjah. ISBN 978-1-60805-244-8. 244 pp. https://dx.doi.org/10.2174/97816080524481110101, more

Available in  Author 

Author keywords
    medullary pyramids, multi-pyramidal kidneys, salt excretion, marine environment

Author  Top 
  • Williams, M.

Abstract
    Humans possess kidneys that are normally multi-pyramidal in their morphology, a characteristic that is unique to Homo sapiens amongst primates. While uni-pyramidal kidneys predominate in terrestrial mammals, kidneys with multiple medullary pyramids are nearly universal in marine mammals. In salt water environments, renal medullary pyramids appear to function as a means to increases the rate of salt and nitrogenous waste excretion by increasing the surface area between the cortex and medulla. While renal medullary pyramids seem to have no functional value in freshwater environments, most freshwater aquatic mammals with renal pyramids can be phylogenetically traced to either marine ancestors or aquatic ancestors that frequented marine environments. Terrestrial mammals with multi-pyramidal kidneys such as elephants, bears, and rhinoceroses also appear to have had semi-aquatic ancestors that frequented marine environments. However, the multi-pyramidal kidneys of the Bactrian camel and Arabian camel (dromedary) were apparently convergently evolved as adaptations to high saltconsumption in xeric terrestrial environments where camels consume halophytic plants and drink water from brine pools with natural salinities higher than seawater. The numerous vestiges of aquatic adaptations in the human body in addition to the abundant distribution of corporeal salt excreting eccrine sweat glands and the excretion of salt tears in humans, strongly suggest that the multiple medullary pyramids of the human kidneys probably evolved as an adaptation to a coastal marine ecology rather than to a xeric terrestrial environment.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Author