Light-limitation on predator-prey interactions: consequences for metabolism and locomotion of deep-sea cephalopods
Seibel, B.A.; Thuesen, E.V.; Childress, J. (2000). Light-limitation on predator-prey interactions: consequences for metabolism and locomotion of deep-sea cephalopods. Biol. Bull. 198: 284-298 In: The Biological Bulletin. Marine Biological Laboratory: Lancaster. ISSN 0006-3185; e-ISSN 1939-8697, more | |
Authors | | Top | - Seibel, B.A.
- Thuesen, E.V., more
- Childress, J.
| | |
Abstract | The present study attempts to correlate the metabolism and locomotory behavior of 25 species of midwater Cephalopoda from California and Hawaii with the maximal activities of key metabolic enzymes in various locomotory muscle tissues. Citrate synthase (CS) and octopine dehydrogenase (ODH) activities were used as indicators of aerobic and anaerobic metabolic potential respectively. CS activity in mantle muscle is highly correlated with whole-animal rates of oxygen consumption, whereas ODH activity in mantle muscle is significantly correlated with a species’ ability to buffer the acidic endproducts of anaerobic metabolism. Both CS and ODH activities in mantle muscle declined strongly with a species’ habitat depth. For example, CS and ODH activities ranged respectively from 0.04 units g 21 and 0.03 units g 21 in the deep-living squid Joubiniteuthis portieri, to 8.13 units g 21 and 420 units g 21 in the epipelagic squid Sthenoteuthis oualaniensis. The relationships between enzymatic activities and depth are consistent with similar patterns observed for whole-animal oxygen consumption. This pattern is believed to result from a relaxation, among deep-living species, in the need for strong locomotory abilities for visual predator/prey interactions; the relaxation is due to light-limitation in the deep sea. Intraspecific scaling patterns for ODH activities may, for species that migrate ontogenetically to great depths, reflect the counteracting effects of body size and light on predator-prey detection distances. When scaled allometrically, enzymatic activities for the giant squid, Architeuthis sp., suggest a fairly active aerobic metabolism but little burst swimming capacity. Interspecific differences in the relative distributions of enzymatic activities in fin, mantle, and arm tissue suggest an increased reliance on fin and arm muscle for locomotion among deep-living species. We suggest that, where high-speed locomotion is not required, more efficient means of locomotion, such as fin swimming or medusoid arm propulsion, are more prevalent. |
|