Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Reciprocal facilitation between annual plants and burrowing crabs: Implications for the restoration of degraded saltmarshes
Qiu, D.; Cui, B.; Ma, X.; Yan, J.; Cai, Y.; Xie, T.; Gao, F.; Wang, F.; Sui, H.; Bai, J.; van de Koppel, J.; Olff, H. (2021). Reciprocal facilitation between annual plants and burrowing crabs: Implications for the restoration of degraded saltmarshes. J. Ecol. 109(4): 1828-1841. https://doi.org/10.1111/1365-2745.13608

Additional data:
In: Journal of Ecology. British Ecological Society: Oxford. ISSN 0022-0477; e-ISSN 1365-2745, more
Peer reviewed article  

Available in  Authors 

Keywords
    Helice tientsinensis Rathbun, 1931 [WoRMS]; Suaeda salsa
Author keywords
    ecosystem engineers; facilitative interaction; geomorphic perturbation; Helice tientsinensis; restoration; saltmarsh; Suaeda salsa

Authors  Top 
  • Qiu, D.
  • Cui, B.
  • Ma, X.
  • Yan, J.
  • Cai, Y.
  • Xie, T.
  • Gao, F.
  • Wang, F.
  • Sui, H.
  • Bai, J.
  • van de Koppel, J., more
  • Olff, H.

Abstract
    1. Increasing evidence shows that facilitative interactions between species play an essential role in coastal wetland ecosystems. However, there is a lack of understanding of how such interactions can be used for restoration purposes in saltmarsh ecosystems. We therefore studied the mechanisms of reciprocal facilitative interactions between nativeannual plants, Suaeda salsa, and burrowing crabs, Helice tientsinensis, in a middle‐elevation saltmarsh (with generally high plant density and moderate tides) in the Yellow River Delta of China.
    2. We investigated the relationship between the densities of the plants and crab burrows in different seasons. Then, we tested whether and how saltmarsh plants and crabs indeed facilitate each other in a series of field and laboratory experiments. Finally, we applied the results by creating a field‐scale artificial approach for microtopographic modification to restore a degraded saltmarsh.
    3. We found that the density of plant seedlings in spring was positively correlated with the density of crab burrows in the previous autumn; moreover, the density of crab burrows was correlated with the density of plants in summer. The concave–convex surface microtopography created by crabs promoted seed retention and seedling establishment of saltmarsh plants in winter and spring. These plants in turn facilitated crabs by inhibiting predators, providing food and reducing physical stresses for crabs in summer and autumn. The experimental removal of saltmarsh plants decreased crab burrow density, while both transplanting and simulating plants in bare patches promoted crabs. The microtopographic modification, inspired by our new understanding of the interactions between saltmarsh plants and crabs, showed that these degraded saltmarsh ecosystems can be restored by a single ploughing intervention.
    4. Synthesis . Our results suggest a reciprocal facilitation between annual plants and burrowing crabs in a middle‐elevation saltmarsh ecosystem. This knowledge yielded new restoration options for degraded coastal saltmarshes through the one‐time ploughing initiation of microtopographic variation, which could promote the re‐establishment of ecosystem engineers and lead to the efficient recovery of pioneer coastal vegetation and associated fauna.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors