Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Particulate trace element export in the North Atlantic (GEOTRACES GA01 Transect, GEOVIDE Cruise)
Lemaitre, N.; Planquette, H.; Dehairs, F.; Planchon, F.; Sarthou, G.; Gallinari, M.; Roig, S.; Jeandel, C.; Castrillejo, M. (2020). Particulate trace element export in the North Atlantic (GEOTRACES GA01 Transect, GEOVIDE Cruise). ACS Earth & Space Chemistry 4(11): 2185-2204. https://hdl.handle.net/10.1021/acsearthspacechem.0c00045
In: ACS Earth & Space Chemistry. American Chemical Society: Washington. e-ISSN 2472-3452, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    particulate trace elements; export fluxes; multiple carrier phases; residence times; GEOTRACES

Authors  Top 
  • Lemaitre, N., more
  • Planquette, H.
  • Dehairs, F., more
  • Planchon, F., more
  • Sarthou, G.
  • Gallinari, M.
  • Roig, S.
  • Jeandel, C.
  • Castrillejo, M.

Abstract
    Vertical export of particulate trace elements (pTEs) is a critically underconstrained aspect of their biogeochemistry. Here, we combine elemental analyses on large (>53 μm) particles and 234Th measurements to determine downward export fluxes from the upper layers (40–110 m) of pTEs (Al, Cd, Co, Cu, Fe, Mn, Ni, P, Ti, V, Zn) and mineral phases (lithogenic, Fe- and Mn-oxides, calcium carbonate, and opal) in the North Atlantic along the GEOVIDE transect (Portugal–Greenland–Canada; GEOTRACES GA01 cruise). The role of lithogenic particles in controlling TE fluxes is obvious at proximity of the Iberian margin where the highest pTE export fluxes were estimated (up to 3912 μg/m2/d for pFe). However, high lithogenic and pTE fluxes are also observed up to 1700 km off this margin in the west European and Icelandic basins (up to 931 μg/m2/d for pFe). The lowest pTE export fluxes are determined in the Labrador Sea (as low as 501 μg/m2/d for pFe). High Mn- and Fe-oxide fluxes are estimated at the open ocean stations, suggesting that authigenic particles are an important vector of pTEs. All along the transect, biogenic particles also drive the pTE export fluxes, as shown by the similar pTE/POC ratios between exports and phytoplankton quotas. The shortest residence times (dissolved + particulate) are generally observed where lithogenic particles control the pTE fluxes (as low as 2 days for Fe) whereas pTEs seem to be longer retained when the contribution of biogenic particles become greater (residence times up to 147 days for Fe).

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors