Skip to main content

IMIS

A new integrated search interface will become available in the next phase of marineinfo.org.
For the time being, please use IMIS to search available data

 

[ report an error in this record ]basket (0): add | show Print this page

Temporal trends of legacy organochlorines in different white-tailed eagle (Haliaeetus albicilla) subpopulations: a retrospective investigation using archived feathers
Sun, J.; Covaci, A.; Bustnes, J.O.; Jaspers, V.L.B.; Helander, B.; Bårdsen, B.-J.; Boertmann, D.; Dietz, R.; Labansen, A.L.; Lepoint, G.; Schulz, R.; Malarvannan, G.; Sonne, C.; Thorup, K.; Tøttrup, A.P.; Zubrod, J.P.; Eens, M.; Eulaers, I. (2020). Temporal trends of legacy organochlorines in different white-tailed eagle (Haliaeetus albicilla) subpopulations: a retrospective investigation using archived feathers. Environ. Int. 138: 105618. https://hdl.handle.net/10.1016/j.envint.2020.105618
In: Environment International. Pergamon: New York. ISSN 0160-4120; e-ISSN 1873-6750, more
Peer reviewed article  

Available in  Authors 

Keyword
    Haliaeetus albicilla (Linnaeus, 1758) [WoRMS]
Author keywords
    POPs; Stable isotopes; Body feathers; Museum collection; Organochlorines

Authors  Top 
  • Sun, J., more
  • Covaci, A., more
  • Bustnes, J.O.
  • Jaspers, V.L.B., illustrator, more
  • Helander, B.
  • Bårdsen, B.-J.
  • Boertmann, D.
  • Dietz, R., more
  • Labansen, A.L.
  • Lepoint, G., more
  • Schulz, R.
  • Malarvannan, G., more
  • Sonne, C.
  • Thorup, K.
  • Tøttrup, A.P.
  • Zubrod, J.P.
  • Eens, M., more
  • Eulaers, I., more

Abstract
    Understanding the spatiotemporal patterns of legacy organochlorines (OCs) is often difficult because monitoring practices differ among studies, fragmented study periods, and unaccounted confounding by ecological variables. We therefore reconstructed long-term (1939–2015) and large-scale (West Greenland, Norway, and central Sweden) trends of major legacy OCs using white-tailed eagle (Haliaeetus albicilla) body feathers, to understand the exposure dynamics in regions with different contamination sources and concentrations, as well as the effectiveness of legislations. We included dietary proxies (δ13C and δ15N) in temporal trend models to control for potential dietary plasticity. Consistent with the hypothesised high local pollution sources, levels of polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs) and hexachlorocyclohexanes (HCHs) in the Swedish subpopulation exceeded those in the other subpopulations. In contrast, chlordanes (CHLs) and hexachlorobenzene (HCB) showed higher concentrations in Greenland, suggesting the importance of long-range transport. The models showed significantly decreasing trends for all OCs in Sweden in 1968–2011 except for CHLs, which only decreased since the 1980s. Nevertheless, median concentrations of DDTs and PCBs remained elevated in the Swedish subpopulation throughout the 1970s, suggesting that the decreases only commenced after the implementation of regulations during the 1970s. We observed significant trends of increasing concentrations of PCBs, CHLs and HCB in Norway from the 1930s to the 1970s/1980s and decreasing concentrations thereafter. All OC concentrations, except those of PCBs were generally significantly decreasing in the Greenland subpopulation in 1985-2013. All three subpopulations showed generally increasing proportions of the more persistent compounds (CB 153, p.p′-DDE and β-HCH) and decreasing proportions of the less persistent ones (CB 52, p.p′-DDT, α- and γ-HCH). Declining trends of OC concentrations may imply the decreasing influence of legacy OCs in these subpopulations. Finally, our results demonstrate the usefulness of archived museum feathers in retrospective monitoring of spatiotemporal trends of legacy OCs using birds of prey as sentinels.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors